QPLIB

A Library of Quadratic Programming Instances

Home // browse instances // view statistics // read documentation // download QPLIB archive [ 1.5G ]

QPLIB_2698

Formats gms lp mod qplib
Problem type probtype LCQ
Solution point objective value solobjvalue 1201.03846200 (gdx, sol)
Solution point infeasibility solinfeasibility 7.2760e-12
Donor donor Ruth Misener
#Variables nvars 196
#Binary Variables nbinvars 0
#Integer Variables nintvars 0
#Bounded non-binary Variables nboundedvars 140
#Variables with only one bound nsingleboundedvars 0
#Nonlinear Variables nnlvars 140
#Nonlinear Binary Variables nnlbinvars 0
#Nonlinear Integer Variables nnlintvars 0
Objective Sense objsense min
Objective type objtype linear
Objective curvature objcurvature linear
#Negative eigenvalues in objective matrix nobjquadnegev  
#Positive eigenvalues in objective matrix nobjquadposev  
#Nonzeros in Objective nobjnz 10
#Nonlinear Nonzeros in Objective nobjnlnz 0
#Quadratic Terms in Objective nobjquadnz 0
#Square Terms in Objective nobjquaddiagnz 0
#Constraints ncons 47
#Linear Constraints nlincons 36
#Quadratic Constraints nquadcons 11
#Diagonal Quadratic Constraints ndiagquadcons 0
Constraints curvature conscurvature indefinite
#Convex Nonlinear Constraints nconvexnlcons 0
#Concave Nonlinear Constraints nconcavenlcons 0
#Indefinite Nonlinear Constraints nindefinitenlcons 11
#Nonzeros in Jacobian njacobiannz 667
#Nonlinear Nonzeros in Jacobian njacobiannlnz 240
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz 240
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz 0
#Blocks in Hessian of Lagrangian nlaghessianblocks 20
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize 2
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize 12
Average blocksize in Hessian of Lagrangian laghessianavgblocksize 7.0
Sparsity Jacobian
Sparsity Lag. Hessian

QPLIB_2698.gms

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         48       47        0        1        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        197      197        0        0        0        0        0        0
*  FX      0        0        0        0        0        0        0        0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        678      438      240        0
*
*  Solve m using QCP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
          ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
          ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
          ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
          ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
          ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
          ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
          ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
          ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
          ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
          ,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167
          ,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180
          ,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193
          ,x194,x195,x196,x197;

Positive Variables  x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
          ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
          ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
          ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
          ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114
          ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127
          ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140
          ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153
          ,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166
          ,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179
          ,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192
          ,x193,x194,x195,x196,x197;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48;


e1..  - objvar + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =E= 0;

e2..  - x12 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x22 =E= -90
     ;

e3..  - x23 - x24 - x25 - x26 - x27 - x28 - x29 - x30 - x31 - x32 - x33
      =E= -350;

e4..  - x34 - x35 - x36 - x37 - x38 - x39 - x40 - x41 - x42 - x43 - x44
      =E= -200;

e5..  - x45 - x46 - x47 - x48 - x49 - x50 - x51 - x52 - x53 - x54 - x55 =E= -40
     ;

e6..  - x56 - x57 - x58 - x59 - x60 - x61 - x62 - x63 - x64 - x65 - x66
      =E= -130;

e7..    x2 - x13 - x24 - x35 - x46 - x57 - x67 - x68 - x69 - x70 - x71 - x72
      - x73 - x74 - x75 - x76 =E= 0;

e8..    x3 - x14 - x25 - x36 - x47 - x58 - x77 - x78 - x79 - x80 - x81 - x82
      - x83 - x84 - x85 - x86 =E= 0;

e9..    x4 - x15 - x26 - x37 - x48 - x59 - x87 - x88 - x89 - x90 - x91 - x92
      - x93 - x94 - x95 - x96 =E= 0;

e10..    x5 - x16 - x27 - x38 - x49 - x60 - x97 - x98 - x99 - x100 - x101
       - x102 - x103 - x104 - x105 - x106 =E= 0;

e11..    x6 - x17 - x28 - x39 - x50 - x61 - x107 - x108 - x109 - x110 - x111
       - x112 - x113 - x114 - x115 - x116 =E= 0;

e12..    x7 - x18 - x29 - x40 - x51 - x62 - x117 - x118 - x119 - x120 - x121
       - x122 - x123 - x124 - x125 - x126 =E= 0;

e13..    x8 - x19 - x30 - x41 - x52 - x63 - x127 - x128 - x129 - x130 - x131
       - x132 - x133 - x134 - x135 - x136 =E= 0;

e14..    x9 - x20 - x31 - x42 - x53 - x64 - x137 - x138 - x139 - x140 - x141
       - x142 - x143 - x144 - x145 - x146 =E= 0;

e15..    x10 - x21 - x32 - x43 - x54 - x65 - x147 - x148 - x149 - x150 - x151
       - x152 - x153 - x154 - x155 - x156 =E= 0;

e16..    x11 - x22 - x33 - x44 - x55 - x66 - x157 - x158 - x159 - x160 - x161
       - x162 - x163 - x164 - x165 - x166 =E= 0;

e17..    x2 - x67 - x77 - x87 - x97 - x107 - x117 - x127 - x137 - x147 - x157
       - x167 =E= 0;

e18..    x3 - x68 - x78 - x88 - x98 - x108 - x118 - x128 - x138 - x148 - x158
       - x168 =E= 0;

e19..    x4 - x69 - x79 - x89 - x99 - x109 - x119 - x129 - x139 - x149 - x159
       - x169 =E= 0;

e20..    x5 - x70 - x80 - x90 - x100 - x110 - x120 - x130 - x140 - x150 - x160
       - x170 =E= 0;

e21..    x6 - x71 - x81 - x91 - x101 - x111 - x121 - x131 - x141 - x151 - x161
       - x171 =E= 0;

e22..    x7 - x72 - x82 - x92 - x102 - x112 - x122 - x132 - x142 - x152 - x162
       - x172 =E= 0;

e23..    x8 - x73 - x83 - x93 - x103 - x113 - x123 - x133 - x143 - x153 - x163
       - x173 =E= 0;

e24..    x9 - x74 - x84 - x94 - x104 - x114 - x124 - x134 - x144 - x154 - x164
       - x174 =E= 0;

e25..    x10 - x75 - x85 - x95 - x105 - x115 - x125 - x135 - x145 - x155 - x165
       - x175 =E= 0;

e26..    x11 - x76 - x86 - x96 - x106 - x116 - x126 - x136 - x146 - x156 - x166
       - x176 =E= 0;

e27..  - x12 - x23 - x34 - x45 - x56 - x167 - x168 - x169 - x170 - x171 - x172
       - x173 - x174 - x175 - x176 + x177 =E= 0;

e28..  - 0.05*x178 + x179 =E= 0;

e29..  - 0.2*x180 + x181 =E= 0;

e30..  - 0.15*x182 + x183 =E= 0;

e31..  - 0.88*x184 + x185 =E= 0;

e32..  - 0.7*x186 + x187 =E= 0;

e33..  - 0.4*x188 + x189 =E= 0;

e34..  - 0.33*x190 + x191 =E= 0;

e35..  - 0.3*x192 + x193 =E= 0;

e36..  - 0.4*x194 + x195 =E= 0;

e37..  - 0.3*x196 + x197 =E= 0;

e38.. x179*x67 - x178*x2 + x181*x68 + x183*x69 + x185*x70 + x187*x71 + x189*x72
       + x191*x73 + x193*x74 + x195*x75 + x197*x76 + 330*x13 + 50*x24 + 150*x35
       + 240*x46 + 120*x57 =E= 0;

e39.. x179*x77 - x180*x3 + x181*x78 + x183*x79 + x185*x80 + x187*x81 + x189*x82
       + x191*x83 + x193*x84 + x195*x85 + x197*x86 + 330*x14 + 50*x25 + 150*x36
       + 240*x47 + 120*x58 =E= 0;

e40.. x179*x87 - x182*x4 + x181*x88 + x183*x89 + x185*x90 + x187*x91 + x189*x92
       + x191*x93 + x193*x94 + x195*x95 + x197*x96 + 330*x15 + 50*x26 + 150*x37
       + 240*x48 + 120*x59 =E= 0;

e41.. x179*x97 - x184*x5 + x181*x98 + x183*x99 + x185*x100 + x187*x101 + x189*
      x102 + x191*x103 + x193*x104 + x195*x105 + x197*x106 + 330*x16 + 50*x27
       + 150*x38 + 240*x49 + 120*x60 =E= 0;

e42.. x179*x107 - x186*x6 + x181*x108 + x183*x109 + x185*x110 + x187*x111 + 
      x189*x112 + x191*x113 + x193*x114 + x195*x115 + x197*x116 + 330*x17
       + 50*x28 + 150*x39 + 240*x50 + 120*x61 =E= 0;

e43.. x179*x117 - x188*x7 + x181*x118 + x183*x119 + x185*x120 + x187*x121 + 
      x189*x122 + x191*x123 + x193*x124 + x195*x125 + x197*x126 + 330*x18
       + 50*x29 + 150*x40 + 240*x51 + 120*x62 =E= 0;

e44.. x179*x127 - x190*x8 + x181*x128 + x183*x129 + x185*x130 + x187*x131 + 
      x189*x132 + x191*x133 + x193*x134 + x195*x135 + x197*x136 + 330*x19
       + 50*x30 + 150*x41 + 240*x52 + 120*x63 =E= 0;

e45.. x179*x137 - x192*x9 + x181*x138 + x183*x139 + x185*x140 + x187*x141 + 
      x189*x142 + x191*x143 + x193*x144 + x195*x145 + x197*x146 + 330*x20
       + 50*x31 + 150*x42 + 240*x53 + 120*x64 =E= 0;

e46.. x179*x147 - x194*x10 + x181*x148 + x183*x149 + x185*x150 + x187*x151 + 
      x189*x152 + x191*x153 + x193*x154 + x195*x155 + x197*x156 + 330*x21
       + 50*x32 + 150*x43 + 240*x54 + 120*x65 =E= 0;

e47.. x179*x157 - x196*x11 + x181*x158 + x183*x159 + x185*x160 + x187*x161 + 
      x189*x162 + x191*x163 + x193*x164 + x195*x165 + x197*x166 + 330*x22
       + 50*x33 + 150*x44 + 240*x55 + 120*x66 =E= 0;

e48.. x179*x167 + x181*x168 + x183*x169 + x185*x170 + x187*x171 + x189*x172 + 
      x191*x173 + x193*x174 + x195*x175 + x197*x176 + 330*x12 + 50*x23
       + 150*x34 + 240*x45 + 120*x56 - 10*x177 =L= 0;

* set non-default bounds
x2.up = 1000000;
x3.up = 1000000;
x4.up = 1000000;
x5.up = 1000000;
x6.up = 1000000;
x7.up = 1000000;
x8.up = 1000000;
x9.up = 1000000;
x10.up = 1000000;
x11.up = 1000000;
x12.up = 1000000;
x13.up = 1000000;
x14.up = 1000000;
x15.up = 1000000;
x16.up = 1000000;
x17.up = 1000000;
x18.up = 1000000;
x19.up = 1000000;
x20.up = 1000000;
x21.up = 1000000;
x22.up = 1000000;
x23.up = 1000000;
x24.up = 1000000;
x25.up = 1000000;
x26.up = 1000000;
x27.up = 1000000;
x28.up = 1000000;
x29.up = 1000000;
x30.up = 1000000;
x31.up = 1000000;
x32.up = 1000000;
x33.up = 1000000;
x34.up = 1000000;
x35.up = 1000000;
x36.up = 1000000;
x37.up = 1000000;
x38.up = 1000000;
x39.up = 1000000;
x40.up = 1000000;
x41.up = 1000000;
x42.up = 1000000;
x43.up = 1000000;
x44.up = 1000000;
x45.up = 1000000;
x46.up = 1000000;
x47.up = 1000000;
x48.up = 1000000;
x49.up = 1000000;
x50.up = 1000000;
x51.up = 1000000;
x52.up = 1000000;
x53.up = 1000000;
x54.up = 1000000;
x55.up = 1000000;
x56.up = 1000000;
x57.up = 1000000;
x58.up = 1000000;
x59.up = 1000000;
x60.up = 1000000;
x61.up = 1000000;
x62.up = 1000000;
x63.up = 1000000;
x64.up = 1000000;
x65.up = 1000000;
x66.up = 1000000;
x67.up = 1000000;
x68.up = 1000000;
x69.up = 1000000;
x70.up = 1000000;
x71.up = 1000000;
x72.up = 1000000;
x73.up = 1000000;
x74.up = 1000000;
x75.up = 1000000;
x76.up = 1000000;
x77.up = 1000000;
x78.up = 1000000;
x79.up = 1000000;
x80.up = 1000000;
x81.up = 1000000;
x82.up = 1000000;
x83.up = 1000000;
x84.up = 1000000;
x85.up = 1000000;
x86.up = 1000000;
x87.up = 1000000;
x88.up = 1000000;
x89.up = 1000000;
x90.up = 1000000;
x91.up = 1000000;
x92.up = 1000000;
x93.up = 1000000;
x94.up = 1000000;
x95.up = 1000000;
x96.up = 1000000;
x97.up = 1000000;
x98.up = 1000000;
x99.up = 1000000;
x100.up = 1000000;
x101.up = 1000000;
x102.up = 1000000;
x103.up = 1000000;
x104.up = 1000000;
x105.up = 1000000;
x106.up = 1000000;
x107.up = 1000000;
x108.up = 1000000;
x109.up = 1000000;
x110.up = 1000000;
x111.up = 1000000;
x112.up = 1000000;
x113.up = 1000000;
x114.up = 1000000;
x115.up = 1000000;
x116.up = 1000000;
x117.up = 1000000;
x118.up = 1000000;
x119.up = 1000000;
x120.up = 1000000;
x121.up = 1000000;
x122.up = 1000000;
x123.up = 1000000;
x124.up = 1000000;
x125.up = 1000000;
x126.up = 1000000;
x127.up = 1000000;
x128.up = 1000000;
x129.up = 1000000;
x130.up = 1000000;
x131.up = 1000000;
x132.up = 1000000;
x133.up = 1000000;
x134.up = 1000000;
x135.up = 1000000;
x136.up = 1000000;
x137.up = 1000000;
x138.up = 1000000;
x139.up = 1000000;
x140.up = 1000000;
x141.up = 1000000;
x142.up = 1000000;
x143.up = 1000000;
x144.up = 1000000;
x145.up = 1000000;
x146.up = 1000000;
x147.up = 1000000;
x148.up = 1000000;
x149.up = 1000000;
x150.up = 1000000;
x151.up = 1000000;
x152.up = 1000000;
x153.up = 1000000;
x154.up = 1000000;
x155.up = 1000000;
x156.up = 1000000;
x157.up = 1000000;
x158.up = 1000000;
x159.up = 1000000;
x160.up = 1000000;
x161.up = 1000000;
x162.up = 1000000;
x163.up = 1000000;
x164.up = 1000000;
x165.up = 1000000;
x166.up = 1000000;
x167.up = 1000000;
x168.up = 1000000;
x169.up = 1000000;
x170.up = 1000000;
x171.up = 1000000;
x172.up = 1000000;
x173.up = 1000000;
x174.up = 1000000;
x175.up = 1000000;
x176.up = 1000000;
x177.up = 1000000;
x178.up = 30;
x179.up = 1000000;
x180.up = 100;
x181.up = 1000000;
x182.up = 50;
x183.up = 1000000;
x184.up = 227;
x185.up = 1000000;
x186.up = 100;
x187.up = 1000000;
x188.up = 300;
x189.up = 1000000;
x190.up = 12;
x191.up = 1000000;
x192.up = 970;
x193.up = 1000000;
x194.up = 20;
x195.up = 1000000;
x196.up = 250;
x197.up = 1000000;

Model m / all /;

m.limrow=0; m.limcol=0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

m.tolproj = 0.0;
$if not set QCP $set QCP QCP
Solve m using %QCP% minimizing objvar;





Website © 2017-2019 by Zuse Institute Berlin. All rights reserved. Imprint.