QPLIB

A Library of Quadratic Programming Instances

Home // browse instances // view statistics // read documentation // download QPLIB archive [ 1.5G ]

QPLIB_2834

Formats gms lp mod qplib
Problem type probtype LCQ
Solution point objective value solobjvalue 365.78360650 (gdx, sol)
Solution point infeasibility solinfeasibility 3.6380e-12
Donor donor Ruth Misener
#Variables nvars 156
#Binary Variables nbinvars 0
#Integer Variables nintvars 0
#Bounded non-binary Variables nboundedvars 100
#Variables with only one bound nsingleboundedvars 0
#Nonlinear Variables nnlvars 100
#Nonlinear Binary Variables nnlbinvars 0
#Nonlinear Integer Variables nnlintvars 0
Objective Sense objsense min
Objective type objtype linear
Objective curvature objcurvature linear
#Negative eigenvalues in objective matrix nobjquadnegev  
#Positive eigenvalues in objective matrix nobjquadposev  
#Nonzeros in Objective nobjnz 35
#Nonlinear Nonzeros in Objective nobjnlnz 0
#Quadratic Terms in Objective nobjquadnz 0
#Square Terms in Objective nobjquaddiagnz 0
#Constraints ncons 86
#Linear Constraints nlincons 14
#Quadratic Constraints nquadcons 72
#Diagonal Quadratic Constraints ndiagquadcons 0
Constraints curvature conscurvature indefinite
#Convex Nonlinear Constraints nconvexnlcons 0
#Concave Nonlinear Constraints nconcavenlcons 0
#Indefinite Nonlinear Constraints nindefinitenlcons 72
#Nonzeros in Jacobian njacobiannz 972
#Nonlinear Nonzeros in Jacobian njacobiannlnz 570
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz 540
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz 0
#Blocks in Hessian of Lagrangian nlaghessianblocks 5
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize 20
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize 20
Average blocksize in Hessian of Lagrangian laghessianavgblocksize 20.0
Sparsity Jacobian
Sparsity Lag. Hessian

QPLIB_2834.gms

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         87       75       12        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        157      157        0        0        0        0        0        0
*  FX      0        0        0        0        0        0        0        0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*       1008      438      570        0
*
*  Solve m using QCP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
          ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
          ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
          ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
          ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
          ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
          ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
          ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
          ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
          ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
          ,x155,x156,x157;

Positive Variables  x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
          ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
          ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85
          ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101
          ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114
          ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127
          ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140
          ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153
          ,x154,x155,x156,x157;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87;


e1..  - objvar + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13
      + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25
      + x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 =E= 0;

e2..  - x2 - x9 - x16 - x23 - x30 + x97 - x98 - x99 - x100 - x101 - x102 - x103
      - x104 =E= 0;

e3..  - x3 - x10 - x17 - x24 - x31 + x105 - x106 - x107 - x108 - x109 - x110
      - x111 - x112 =E= 0;

e4..  - x4 - x11 - x18 - x25 - x32 + x113 - x114 - x115 - x116 - x117 - x118
      - x119 - x120 =E= 0;

e5..  - x5 - x12 - x19 - x26 - x33 + x121 - x122 - x123 - x124 - x125 - x126
      - x127 - x128 =E= 0;

e6..  - x6 - x13 - x20 - x27 - x34 + x129 - x130 - x131 - x132 - x133 - x134
      - x135 - x136 =E= 0;

e7..  - x7 - x14 - x21 - x28 - x35 - x137 - x138 - x139 - x140 - x141 - x142
      - x143 =E= -68;

e8..  - x8 - x15 - x22 - x29 - x36 - x144 - x145 - x146 - x147 - x148 - x149
      - x150 =E= -70;

e9..    x97 - x98 - x106 - x114 - x122 - x130 - x137 - x144 - x151 =E= 0;

e10..  - x99 + x105 - x107 - x115 - x123 - x131 - x138 - x145 - x152 =E= 0;

e11..  - x100 - x108 + x113 - x116 - x124 - x132 - x139 - x146 - x153 =E= 0;

e12..  - x101 - x109 - x117 + x121 - x125 - x133 - x140 - x147 - x154 =E= 0;

e13..  - x102 - x110 - x118 - x126 + x129 - x134 - x141 - x148 - x155 =E= 0;

e14..  - x103 - x111 - x119 - x127 - x135 - x142 - x149 - x156 =E= -58;

e15..  - x104 - x112 - x120 - x128 - x136 - x143 - x150 - x157 =E= -120;

e16.. x97*x37 - x98*x67 - x99*x73 - x100*x79 - x101*x85 - x102*x91 - 4*x2
       - 4*x9 - 4*x23 - 2*x30 - 112*x103 - 491*x104 =E= 0;

e17.. x97*x38 - x98*x68 - x99*x74 - x100*x80 - x101*x86 - x102*x92 - 5*x2
       - 6*x9 - 6*x16 - 6*x30 - 429*x103 - 476*x104 =E= 0;

e18.. x97*x39 - x98*x69 - x99*x75 - x100*x81 - x101*x87 - x102*x93 - 2*x9
       - 4*x16 - 2*x23 - 2*x30 - 505*x103 - 197*x104 =E= 0;

e19.. x97*x40 - x98*x70 - x99*x76 - x100*x82 - x101*x88 - x102*x94 - 8*x2
       - 7*x9 - 5*x16 - 7*x23 - 5*x30 - 266*x103 - 493*x104 =E= 0;

e20.. x97*x41 - x98*x71 - x99*x77 - x100*x83 - x101*x89 - x102*x95 - 2*x9 - x16
       - 2*x23 - 3*x30 - 481*x103 - 399*x104 =E= 0;

e21.. x97*x42 - x98*x72 - x99*x78 - x100*x84 - x101*x90 - x102*x96 - 4*x2 - x16
       - x30 - 505*x103 - 495*x104 =E= 0;

e22.. x105*x43 - x106*x67 - x107*x73 - x108*x79 - x109*x85 - x110*x91 - 4*x3
       - 4*x10 - 4*x24 - 2*x31 - 112*x111 - 491*x112 =E= 0;

e23.. x105*x44 - x106*x68 - x107*x74 - x108*x80 - x109*x86 - x110*x92 - 5*x3
       - 6*x10 - 6*x17 - 6*x31 - 429*x111 - 476*x112 =E= 0;

e24.. x105*x45 - x106*x69 - x107*x75 - x108*x81 - x109*x87 - x110*x93 - 2*x10
       - 4*x17 - 2*x24 - 2*x31 - 505*x111 - 197*x112 =E= 0;

e25.. x105*x46 - x106*x70 - x107*x76 - x108*x82 - x109*x88 - x110*x94 - 8*x3
       - 7*x10 - 5*x17 - 7*x24 - 5*x31 - 266*x111 - 493*x112 =E= 0;

e26.. x105*x47 - x106*x71 - x107*x77 - x108*x83 - x109*x89 - x110*x95 - 2*x10
       - x17 - 2*x24 - 3*x31 - 481*x111 - 399*x112 =E= 0;

e27.. x105*x48 - x106*x72 - x107*x78 - x108*x84 - x109*x90 - x110*x96 - 4*x3
       - x17 - x31 - 505*x111 - 495*x112 =E= 0;

e28.. x113*x49 - x114*x67 - x115*x73 - x116*x79 - x117*x85 - x118*x91 - 4*x4
       - 4*x11 - 4*x25 - 2*x32 - 112*x119 - 491*x120 =E= 0;

e29.. x113*x50 - x114*x68 - x115*x74 - x116*x80 - x117*x86 - x118*x92 - 5*x4
       - 6*x11 - 6*x18 - 6*x32 - 429*x119 - 476*x120 =E= 0;

e30.. x113*x51 - x114*x69 - x115*x75 - x116*x81 - x117*x87 - x118*x93 - 2*x11
       - 4*x18 - 2*x25 - 2*x32 - 505*x119 - 197*x120 =E= 0;

e31.. x113*x52 - x114*x70 - x115*x76 - x116*x82 - x117*x88 - x118*x94 - 8*x4
       - 7*x11 - 5*x18 - 7*x25 - 5*x32 - 266*x119 - 493*x120 =E= 0;

e32.. x113*x53 - x114*x71 - x115*x77 - x116*x83 - x117*x89 - x118*x95 - 2*x11
       - x18 - 2*x25 - 3*x32 - 481*x119 - 399*x120 =E= 0;

e33.. x113*x54 - x114*x72 - x115*x78 - x116*x84 - x117*x90 - x118*x96 - 4*x4
       - x18 - x32 - 505*x119 - 495*x120 =E= 0;

e34.. x121*x55 - x122*x67 - x123*x73 - x124*x79 - x125*x85 - x126*x91 - 4*x5
       - 4*x12 - 4*x26 - 2*x33 - 112*x127 - 491*x128 =E= 0;

e35.. x121*x56 - x122*x68 - x123*x74 - x124*x80 - x125*x86 - x126*x92 - 5*x5
       - 6*x12 - 6*x19 - 6*x33 - 429*x127 - 476*x128 =E= 0;

e36.. x121*x57 - x122*x69 - x123*x75 - x124*x81 - x125*x87 - x126*x93 - 2*x12
       - 4*x19 - 2*x26 - 2*x33 - 505*x127 - 197*x128 =E= 0;

e37.. x121*x58 - x122*x70 - x123*x76 - x124*x82 - x125*x88 - x126*x94 - 8*x5
       - 7*x12 - 5*x19 - 7*x26 - 5*x33 - 266*x127 - 493*x128 =E= 0;

e38.. x121*x59 - x122*x71 - x123*x77 - x124*x83 - x125*x89 - x126*x95 - 2*x12
       - x19 - 2*x26 - 3*x33 - 481*x127 - 399*x128 =E= 0;

e39.. x121*x60 - x122*x72 - x123*x78 - x124*x84 - x125*x90 - x126*x96 - 4*x5
       - x19 - x33 - 505*x127 - 495*x128 =E= 0;

e40.. x129*x61 - x130*x67 - x131*x73 - x132*x79 - x133*x85 - x134*x91 - 4*x6
       - 4*x13 - 4*x27 - 2*x34 - 112*x135 - 491*x136 =E= 0;

e41.. x129*x62 - x130*x68 - x131*x74 - x132*x80 - x133*x86 - x134*x92 - 5*x6
       - 6*x13 - 6*x20 - 6*x34 - 429*x135 - 476*x136 =E= 0;

e42.. x129*x63 - x130*x69 - x131*x75 - x132*x81 - x133*x87 - x134*x93 - 2*x13
       - 4*x20 - 2*x27 - 2*x34 - 505*x135 - 197*x136 =E= 0;

e43.. x129*x64 - x130*x70 - x131*x76 - x132*x82 - x133*x88 - x134*x94 - 8*x6
       - 7*x13 - 5*x20 - 7*x27 - 5*x34 - 266*x135 - 493*x136 =E= 0;

e44.. x129*x65 - x130*x71 - x131*x77 - x132*x83 - x133*x89 - x134*x95 - 2*x13
       - x20 - 2*x27 - 3*x34 - 481*x135 - 399*x136 =E= 0;

e45.. x129*x66 - x130*x72 - x131*x78 - x132*x84 - x133*x90 - x134*x96 - 4*x6
       - x20 - x34 - 505*x135 - 495*x136 =E= 0;

e46.. (-x137*x67) - x138*x73 - x139*x79 - x140*x85 - x141*x91 - 4*x7 - 4*x14
       - 4*x28 - 2*x35 - 112*x142 - 491*x143 =G= -2924;

e47.. (-x137*x68) - x138*x74 - x139*x80 - x140*x86 - x141*x92 - 5*x7 - 6*x14
       - 6*x21 - 6*x35 - 429*x142 - 476*x143 =G= -23256;

e48.. (-x137*x69) - x138*x75 - x139*x81 - x140*x87 - x141*x93 - 2*x14 - 4*x21
       - 2*x28 - 2*x35 - 505*x142 - 197*x143 =G= -15776;

e49.. (-x137*x70) - x138*x76 - x139*x82 - x140*x88 - x141*x94 - 8*x7 - 7*x14
       - 5*x21 - 7*x28 - 5*x35 - 266*x142 - 493*x143 =G= -18020;

e50.. (-x137*x71) - x138*x77 - x139*x83 - x140*x89 - x141*x95 - 2*x14 - x21
       - 2*x28 - 3*x35 - 481*x142 - 399*x143 =G= -26724;

e51.. (-x137*x72) - x138*x78 - x139*x84 - x140*x90 - x141*x96 - 4*x7 - x21
       - x35 - 505*x142 - 495*x143 =G= -20332;

e52.. (-x144*x67) - x145*x73 - x146*x79 - x147*x85 - x148*x91 - 4*x8 - 4*x15
       - 4*x29 - 2*x36 - 112*x149 - 491*x150 =G= -31640;

e53.. (-x144*x68) - x145*x74 - x146*x80 - x147*x86 - x148*x92 - 5*x8 - 6*x15
       - 6*x22 - 6*x36 - 429*x149 - 476*x150 =G= -4480;

e54.. (-x144*x69) - x145*x75 - x146*x81 - x147*x87 - x148*x93 - 2*x15 - 4*x22
       - 2*x29 - 2*x36 - 505*x149 - 197*x150 =G= -700;

e55.. (-x144*x70) - x145*x76 - x146*x82 - x147*x88 - x148*x94 - 8*x8 - 7*x15
       - 5*x22 - 7*x29 - 5*x36 - 266*x149 - 493*x150 =G= -23380;

e56.. (-x144*x71) - x145*x77 - x146*x83 - x147*x89 - x148*x95 - 2*x15 - x22
       - 2*x29 - 3*x36 - 481*x149 - 399*x150 =G= -10010;

e57.. (-x144*x72) - x145*x78 - x146*x84 - x147*x90 - x148*x96 - 4*x8 - x22
       - x36 - 505*x149 - 495*x150 =G= -17080;

e58.. x97*x37 - x97*x67 =E= -6016;

e59.. x97*x38 - x97*x68 =E= -22272;

e60.. x97*x39 - x97*x69 =E= -15744;

e61.. x97*x40 - x97*x70 =E= -256;

e62.. x97*x41 - x97*x71 =E= -10752;

e63.. x97*x42 - x97*x72 =E= -6400;

e64.. x105*x43 - x105*x73 =E= -4250;

e65.. x105*x44 - x105*x74 =E= -3230;

e66.. x105*x45 - x105*x75 =E= -1870;

e67.. x105*x46 - x105*x76 =E= -84796;

e68.. x105*x47 - x105*x77 =E= -884;

e69.. x105*x48 - x105*x78 =E= -3332;

e70.. x113*x49 - x113*x79 =E= -10080;

e71.. x113*x50 - x113*x80 =E= -4914;

e72.. x113*x51 - x113*x81 =E= -46242;

e73.. x113*x52 - x113*x82 =E= -5418;

e74.. x113*x53 - x113*x83 =E= -16506;

e75.. x113*x54 - x113*x84 =E= -4284;

e76.. x121*x55 - x121*x85 =E= -756;

e77.. x121*x56 - x121*x86 =E= -9576;

e78.. x121*x57 - x121*x87 =E= -8540;

e79.. x121*x58 - x121*x88 =E= -11424;

e80.. x121*x59 - x121*x89 =E= -3780;

e81.. x121*x60 - x121*x90 =E= -5908;

e82.. x129*x61 - x129*x91 =E= -60000;

e83.. x129*x62 - x129*x92 =E= -421440;

e84.. x129*x63 - x129*x93 =E= -16800;

e85.. x129*x64 - x129*x94 =E= -4200;

e86.. x129*x65 - x129*x95 =E= -18960;

e87.. x129*x66 - x129*x96 =E= -9360;

* set non-default bounds
x2.up = 100000;
x3.up = 100000;
x4.up = 100000;
x5.up = 100000;
x6.up = 100000;
x7.up = 100000;
x8.up = 100000;
x9.up = 100000;
x10.up = 100000;
x11.up = 100000;
x12.up = 100000;
x13.up = 100000;
x14.up = 100000;
x15.up = 100000;
x16.up = 100000;
x17.up = 100000;
x18.up = 100000;
x19.up = 100000;
x20.up = 100000;
x21.up = 100000;
x22.up = 100000;
x23.up = 100000;
x24.up = 100000;
x25.up = 100000;
x26.up = 100000;
x27.up = 100000;
x28.up = 100000;
x29.up = 100000;
x30.up = 100000;
x31.up = 100000;
x32.up = 100000;
x33.up = 100000;
x34.up = 100000;
x35.up = 100000;
x36.up = 100000;
x37.up = 45;
x38.up = 52;
x39.up = 189;
x40.up = 33;
x41.up = 210;
x42.up = 24;
x43.up = 120;
x44.up = 30;
x45.up = 30;
x46.up = 12234;
x47.up = 98;
x48.up = 656;
x49.up = 142;
x50.up = 420;
x51.up = 200;
x52.up = 13;
x53.up = 637;
x54.up = 24;
x55.up = 20;
x56.up = 25;
x57.up = 15;
x58.up = 25;
x59.up = 454;
x60.up = 256;
x61.up = 350;
x62.up = 48;
x63.up = 260;
x64.up = 21;
x65.up = 278;
x66.up = 12;
x67.up = 139;
x68.up = 400;
x69.up = 435;
x70.up = 37;
x71.up = 378;
x72.up = 124;
x73.up = 245;
x74.up = 125;
x75.up = 85;
x76.up = 14728;
x77.up = 124;
x78.up = 754;
x79.up = 222;
x80.up = 459;
x81.up = 567;
x82.up = 56;
x83.up = 768;
x84.up = 58;
x85.up = 47;
x86.up = 367;
x87.up = 320;
x88.up = 433;
x89.up = 589;
x90.up = 467;
x91.up = 850;
x92.up = 3560;
x93.up = 400;
x94.up = 56;
x95.up = 436;
x96.up = 90;
x97.up = 64;
x98.up = 100000;
x99.up = 100000;
x100.up = 100000;
x101.up = 100000;
x102.up = 100000;
x103.up = 100000;
x104.up = 100000;
x105.up = 34;
x106.up = 100000;
x107.up = 100000;
x108.up = 100000;
x109.up = 100000;
x110.up = 100000;
x111.up = 100000;
x112.up = 100000;
x113.up = 126;
x114.up = 100000;
x115.up = 100000;
x116.up = 100000;
x117.up = 100000;
x118.up = 100000;
x119.up = 100000;
x120.up = 100000;
x121.up = 28;
x122.up = 100000;
x123.up = 100000;
x124.up = 100000;
x125.up = 100000;
x126.up = 100000;
x127.up = 100000;
x128.up = 100000;
x129.up = 120;
x130.up = 100000;
x131.up = 100000;
x132.up = 100000;
x133.up = 100000;
x134.up = 100000;
x135.up = 100000;
x136.up = 100000;
x137.up = 100000;
x138.up = 100000;
x139.up = 100000;
x140.up = 100000;
x141.up = 100000;
x142.up = 100000;
x143.up = 100000;
x144.up = 100000;
x145.up = 100000;
x146.up = 100000;
x147.up = 100000;
x148.up = 100000;
x149.up = 100000;
x150.up = 100000;
x151.up = 100000;
x152.up = 100000;
x153.up = 100000;
x154.up = 100000;
x155.up = 100000;
x156.up = 100000;
x157.up = 100000;

Model m / all /;

m.limrow=0; m.limcol=0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

m.tolproj = 0.0;
$if not set QCP $set QCP QCP
Solve m using %QCP% minimizing objvar;





Website © 2017-2019 by Zuse Institute Berlin. All rights reserved. Imprint.