QPLIB

A Library of Quadratic Programming Instances

Home // browse instances // view statistics // read documentation // download QPLIB archive [ 1.5G ]

QPLIB_3780

Formats gms lp mod qplib
Problem type probtype LIQ
Solution point objective value solobjvalue 90.60000000 (gdx, sol)
Solution point infeasibility solinfeasibility 0.0000e+00
Donor donor Stefan Vigerske
#Variables nvars 168
#Binary Variables nbinvars 12
#Integer Variables nintvars 156
#Bounded non-binary Variables nboundedvars 156
#Variables with only one bound nsingleboundedvars 0
#Nonlinear Variables nnlvars 156
#Nonlinear Binary Variables nnlbinvars 0
#Nonlinear Integer Variables nnlintvars 156
Objective Sense objsense min
Objective type objtype linear
Objective curvature objcurvature linear
#Negative eigenvalues in objective matrix nobjquadnegev  
#Positive eigenvalues in objective matrix nobjquadposev  
#Nonzeros in Objective nobjnz 24
#Nonlinear Nonzeros in Objective nobjnlnz 0
#Quadratic Terms in Objective nobjquadnz 0
#Square Terms in Objective nobjquaddiagnz 0
#Constraints ncons 72
#Linear Constraints nlincons 60
#Quadratic Constraints nquadcons 12
#Diagonal Quadratic Constraints ndiagquadcons 0
Constraints curvature conscurvature indefinite
#Convex Nonlinear Constraints nconvexnlcons 0
#Concave Nonlinear Constraints nconcavenlcons 0
#Indefinite Nonlinear Constraints nindefinitenlcons 12
#Nonzeros in Jacobian njacobiannz 768
#Nonlinear Nonzeros in Jacobian njacobiannlnz 288
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz 288
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz 0
#Blocks in Hessian of Lagrangian nlaghessianblocks 12
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize 13
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize 13
Average blocksize in Hessian of Lagrangian laghessianavgblocksize 13.0
Sparsity Jacobian
Sparsity Lag. Hessian

QPLIB_3780.gms

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         73        1        0       72        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        169        1       12      156        0        0        0        0
*  FX      0        0        0        0        0        0        0        0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        793      505      288        0
*
*  Solve m using MIQCP minimizing objvar;


Variables  objvar,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,i14,i15,i16,i17,i18
          ,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31,i32,i33,i34,i35
          ,i36,i37,i38,i39,i40,i41,i42,i43,i44,i45,i46,i47,i48,i49,i50,i51,i52
          ,i53,i54,i55,i56,i57,i58,i59,i60,i61,i62,i63,i64,i65,i66,i67,i68,i69
          ,i70,i71,i72,i73,i74,i75,i76,i77,i78,i79,i80,i81,i82,i83,i84,i85,i86
          ,i87,i88,i89,i90,i91,i92,i93,i94,i95,i96,i97,i98,i99,i100,i101,i102
          ,i103,i104,i105,i106,i107,i108,i109,i110,i111,i112,i113,i114,i115
          ,i116,i117,i118,i119,i120,i121,i122,i123,i124,i125,i126,i127,i128
          ,i129,i130,i131,i132,i133,i134,i135,i136,i137,i138,i139,i140,i141
          ,i142,i143,i144,i145,i146,i147,i148,i149,i150,i151,i152,i153,i154
          ,i155,i156,i157,i158,i159,i160,i161,i162,i163,i164,i165,i166,i167
          ,i168,i169;

Binary Variables  b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13;

Integer Variables  i14,i15,i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27,i28
          ,i29,i30,i31,i32,i33,i34,i35,i36,i37,i38,i39,i40,i41,i42,i43,i44,i45
          ,i46,i47,i48,i49,i50,i51,i52,i53,i54,i55,i56,i57,i58,i59,i60,i61,i62
          ,i63,i64,i65,i66,i67,i68,i69,i70,i71,i72,i73,i74,i75,i76,i77,i78,i79
          ,i80,i81,i82,i83,i84,i85,i86,i87,i88,i89,i90,i91,i92,i93,i94,i95,i96
          ,i97,i98,i99,i100,i101,i102,i103,i104,i105,i106,i107,i108,i109,i110
          ,i111,i112,i113,i114,i115,i116,i117,i118,i119,i120,i121,i122,i123
          ,i124,i125,i126,i127,i128,i129,i130,i131,i132,i133,i134,i135,i136
          ,i137,i138,i139,i140,i141,i142,i143,i144,i145,i146,i147,i148,i149
          ,i150,i151,i152,i153,i154,i155,i156,i157,i158,i159,i160,i161,i162
          ,i163,i164,i165,i166,i167,i168,i169;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73;


e1..  - objvar + 0.1*b2 + 0.2*b3 + 0.3*b4 + 0.4*b5 + 0.5*b6 + 0.6*b7 + 0.7*b8
      + 0.8*b9 + 0.9*b10 + b11 + 1.1*b12 + 1.2*b13 + i14 + i15 + i16 + i17
      + i18 + i19 + i20 + i21 + i22 + i23 + i24 + i25 =E= 0;

e2..    350*i26 + 450*i27 + 550*i28 + 650*i29 + 700*i30 + 740*i31 + 800*i32
      + 840*i33 + 910*i34 + 960*i35 + 1010*i36 + 1060*i37 =L= 2100;

e3..    350*i38 + 450*i39 + 550*i40 + 650*i41 + 700*i42 + 740*i43 + 800*i44
      + 840*i45 + 910*i46 + 960*i47 + 1010*i48 + 1060*i49 =L= 2100;

e4..    350*i50 + 450*i51 + 550*i52 + 650*i53 + 700*i54 + 740*i55 + 800*i56
      + 840*i57 + 910*i58 + 960*i59 + 1010*i60 + 1060*i61 =L= 2100;

e5..    350*i62 + 450*i63 + 550*i64 + 650*i65 + 700*i66 + 740*i67 + 800*i68
      + 840*i69 + 910*i70 + 960*i71 + 1010*i72 + 1060*i73 =L= 2100;

e6..    350*i74 + 450*i75 + 550*i76 + 650*i77 + 700*i78 + 740*i79 + 800*i80
      + 840*i81 + 910*i82 + 960*i83 + 1010*i84 + 1060*i85 =L= 2100;

e7..    350*i86 + 450*i87 + 550*i88 + 650*i89 + 700*i90 + 740*i91 + 800*i92
      + 840*i93 + 910*i94 + 960*i95 + 1010*i96 + 1060*i97 =L= 2100;

e8..    350*i98 + 450*i99 + 550*i100 + 650*i101 + 700*i102 + 740*i103
      + 800*i104 + 840*i105 + 910*i106 + 960*i107 + 1010*i108 + 1060*i109
      =L= 2100;

e9..    350*i110 + 450*i111 + 550*i112 + 650*i113 + 700*i114 + 740*i115
      + 800*i116 + 840*i117 + 910*i118 + 960*i119 + 1010*i120 + 1060*i121
      =L= 2100;

e10..    350*i122 + 450*i123 + 550*i124 + 650*i125 + 700*i126 + 740*i127
       + 800*i128 + 840*i129 + 910*i130 + 960*i131 + 1010*i132 + 1060*i133
       =L= 2100;

e11..    350*i134 + 450*i135 + 550*i136 + 650*i137 + 700*i138 + 740*i139
       + 800*i140 + 840*i141 + 910*i142 + 960*i143 + 1010*i144 + 1060*i145
       =L= 2100;

e12..    350*i146 + 450*i147 + 550*i148 + 650*i149 + 700*i150 + 740*i151
       + 800*i152 + 840*i153 + 910*i154 + 960*i155 + 1010*i156 + 1060*i157
       =L= 2100;

e13..    350*i158 + 450*i159 + 550*i160 + 650*i161 + 700*i162 + 740*i163
       + 800*i164 + 840*i165 + 910*i166 + 960*i167 + 1010*i168 + 1060*i169
       =L= 2100;

e14..  - 350*i26 - 450*i27 - 550*i28 - 650*i29 - 700*i30 - 740*i31 - 800*i32
       - 840*i33 - 910*i34 - 960*i35 - 1010*i36 - 1060*i37 =L= -2000;

e15..  - 350*i38 - 450*i39 - 550*i40 - 650*i41 - 700*i42 - 740*i43 - 800*i44
       - 840*i45 - 910*i46 - 960*i47 - 1010*i48 - 1060*i49 =L= -2000;

e16..  - 350*i50 - 450*i51 - 550*i52 - 650*i53 - 700*i54 - 740*i55 - 800*i56
       - 840*i57 - 910*i58 - 960*i59 - 1010*i60 - 1060*i61 =L= -2000;

e17..  - 350*i62 - 450*i63 - 550*i64 - 650*i65 - 700*i66 - 740*i67 - 800*i68
       - 840*i69 - 910*i70 - 960*i71 - 1010*i72 - 1060*i73 =L= -2000;

e18..  - 350*i74 - 450*i75 - 550*i76 - 650*i77 - 700*i78 - 740*i79 - 800*i80
       - 840*i81 - 910*i82 - 960*i83 - 1010*i84 - 1060*i85 =L= -2000;

e19..  - 350*i86 - 450*i87 - 550*i88 - 650*i89 - 700*i90 - 740*i91 - 800*i92
       - 840*i93 - 910*i94 - 960*i95 - 1010*i96 - 1060*i97 =L= -2000;

e20..  - 350*i98 - 450*i99 - 550*i100 - 650*i101 - 700*i102 - 740*i103
       - 800*i104 - 840*i105 - 910*i106 - 960*i107 - 1010*i108 - 1060*i109
       =L= -2000;

e21..  - 350*i110 - 450*i111 - 550*i112 - 650*i113 - 700*i114 - 740*i115
       - 800*i116 - 840*i117 - 910*i118 - 960*i119 - 1010*i120 - 1060*i121
       =L= -2000;

e22..  - 350*i122 - 450*i123 - 550*i124 - 650*i125 - 700*i126 - 740*i127
       - 800*i128 - 840*i129 - 910*i130 - 960*i131 - 1010*i132 - 1060*i133
       =L= -2000;

e23..  - 350*i134 - 450*i135 - 550*i136 - 650*i137 - 700*i138 - 740*i139
       - 800*i140 - 840*i141 - 910*i142 - 960*i143 - 1010*i144 - 1060*i145
       =L= -2000;

e24..  - 350*i146 - 450*i147 - 550*i148 - 650*i149 - 700*i150 - 740*i151
       - 800*i152 - 840*i153 - 910*i154 - 960*i155 - 1010*i156 - 1060*i157
       =L= -2000;

e25..  - 350*i158 - 450*i159 - 550*i160 - 650*i161 - 700*i162 - 740*i163
       - 800*i164 - 840*i165 - 910*i166 - 960*i167 - 1010*i168 - 1060*i169
       =L= -2000;

e26..    i26 + i27 + i28 + i29 + i30 + i31 + i32 + i33 + i34 + i35 + i36 + i37
       =L= 5;

e27..    i38 + i39 + i40 + i41 + i42 + i43 + i44 + i45 + i46 + i47 + i48 + i49
       =L= 5;

e28..    i50 + i51 + i52 + i53 + i54 + i55 + i56 + i57 + i58 + i59 + i60 + i61
       =L= 5;

e29..    i62 + i63 + i64 + i65 + i66 + i67 + i68 + i69 + i70 + i71 + i72 + i73
       =L= 5;

e30..    i74 + i75 + i76 + i77 + i78 + i79 + i80 + i81 + i82 + i83 + i84 + i85
       =L= 5;

e31..    i86 + i87 + i88 + i89 + i90 + i91 + i92 + i93 + i94 + i95 + i96 + i97
       =L= 5;

e32..    i98 + i99 + i100 + i101 + i102 + i103 + i104 + i105 + i106 + i107
       + i108 + i109 =L= 5;

e33..    i110 + i111 + i112 + i113 + i114 + i115 + i116 + i117 + i118 + i119
       + i120 + i121 =L= 5;

e34..    i122 + i123 + i124 + i125 + i126 + i127 + i128 + i129 + i130 + i131
       + i132 + i133 =L= 5;

e35..    i134 + i135 + i136 + i137 + i138 + i139 + i140 + i141 + i142 + i143
       + i144 + i145 =L= 5;

e36..    i146 + i147 + i148 + i149 + i150 + i151 + i152 + i153 + i154 + i155
       + i156 + i157 =L= 5;

e37..    i158 + i159 + i160 + i161 + i162 + i163 + i164 + i165 + i166 + i167
       + i168 + i169 =L= 5;

e38..    b2 - i14 =L= 0;

e39..    b3 - i15 =L= 0;

e40..    b4 - i16 =L= 0;

e41..    b5 - i17 =L= 0;

e42..    b6 - i18 =L= 0;

e43..    b7 - i19 =L= 0;

e44..    b8 - i20 =L= 0;

e45..    b9 - i21 =L= 0;

e46..    b10 - i22 =L= 0;

e47..    b11 - i23 =L= 0;

e48..    b12 - i24 =L= 0;

e49..    b13 - i25 =L= 0;

e50..  - 48*b2 + i14 =L= 0;

e51..  - 48*b3 + i15 =L= 0;

e52..  - 48*b4 + i16 =L= 0;

e53..  - 48*b5 + i17 =L= 0;

e54..  - 48*b6 + i18 =L= 0;

e55..  - 48*b7 + i19 =L= 0;

e56..  - 48*b8 + i20 =L= 0;

e57..  - 48*b9 + i21 =L= 0;

e58..  - 48*b10 + i22 =L= 0;

e59..  - 48*b11 + i23 =L= 0;

e60..  - 48*b12 + i24 =L= 0;

e61..  - 48*b13 + i25 =L= 0;

e62.. (-i26*i14) - i38*i15 - i50*i16 - i62*i17 - i74*i18 - i86*i19 - i98*i20 - 
      i110*i21 - i122*i22 - i134*i23 - i146*i24 - i158*i25 =L= -10;

e63.. (-i27*i14) - i39*i15 - i51*i16 - i63*i17 - i75*i18 - i87*i19 - i99*i20 - 
      i111*i21 - i123*i22 - i135*i23 - i147*i24 - i159*i25 =L= -28;

e64.. (-i28*i14) - i40*i15 - i52*i16 - i64*i17 - i76*i18 - i88*i19 - i100*i20
       - i112*i21 - i124*i22 - i136*i23 - i148*i24 - i160*i25 =L= -48;

e65.. (-i29*i14) - i41*i15 - i53*i16 - i65*i17 - i77*i18 - i89*i19 - i101*i20
       - i113*i21 - i125*i22 - i137*i23 - i149*i24 - i161*i25 =L= -28;

e66.. (-i30*i14) - i42*i15 - i54*i16 - i66*i17 - i78*i18 - i90*i19 - i102*i20
       - i114*i21 - i126*i22 - i138*i23 - i150*i24 - i162*i25 =L= -40;

e67.. (-i31*i14) - i43*i15 - i55*i16 - i67*i17 - i79*i18 - i91*i19 - i103*i20
       - i115*i21 - i127*i22 - i139*i23 - i151*i24 - i163*i25 =L= -30;

e68.. (-i32*i14) - i44*i15 - i56*i16 - i68*i17 - i80*i18 - i92*i19 - i104*i20
       - i116*i21 - i128*i22 - i140*i23 - i152*i24 - i164*i25 =L= -21;

e69.. (-i33*i14) - i45*i15 - i57*i16 - i69*i17 - i81*i18 - i93*i19 - i105*i20
       - i117*i21 - i129*i22 - i141*i23 - i153*i24 - i165*i25 =L= -22;

e70.. (-i34*i14) - i46*i15 - i58*i16 - i70*i17 - i82*i18 - i94*i19 - i106*i20
       - i118*i21 - i130*i22 - i142*i23 - i154*i24 - i166*i25 =L= -8;

e71.. (-i35*i14) - i47*i15 - i59*i16 - i71*i17 - i83*i18 - i95*i19 - i107*i20
       - i119*i21 - i131*i22 - i143*i23 - i155*i24 - i167*i25 =L= -8;

e72.. (-i36*i14) - i48*i15 - i60*i16 - i72*i17 - i84*i18 - i96*i19 - i108*i20
       - i120*i21 - i132*i22 - i144*i23 - i156*i24 - i168*i25 =L= -9;

e73.. (-i37*i14) - i49*i15 - i61*i16 - i73*i17 - i85*i18 - i97*i19 - i109*i20
       - i121*i21 - i133*i22 - i145*i23 - i157*i24 - i169*i25 =L= -8;

* set non-default bounds
i14.up = 48;
i15.up = 48;
i16.up = 48;
i17.up = 48;
i18.up = 48;
i19.up = 48;
i20.up = 48;
i21.up = 48;
i22.up = 48;
i23.up = 48;
i24.up = 48;
i25.up = 48;
i26.up = 5;
i27.up = 5;
i28.up = 5;
i29.up = 5;
i30.up = 5;
i31.up = 5;
i32.up = 5;
i33.up = 5;
i34.up = 5;
i35.up = 5;
i36.up = 5;
i37.up = 5;
i38.up = 5;
i39.up = 5;
i40.up = 5;
i41.up = 5;
i42.up = 5;
i43.up = 5;
i44.up = 5;
i45.up = 5;
i46.up = 5;
i47.up = 5;
i48.up = 5;
i49.up = 5;
i50.up = 5;
i51.up = 5;
i52.up = 5;
i53.up = 5;
i54.up = 5;
i55.up = 5;
i56.up = 5;
i57.up = 5;
i58.up = 5;
i59.up = 5;
i60.up = 5;
i61.up = 5;
i62.up = 5;
i63.up = 5;
i64.up = 5;
i65.up = 5;
i66.up = 5;
i67.up = 5;
i68.up = 5;
i69.up = 5;
i70.up = 5;
i71.up = 5;
i72.up = 5;
i73.up = 5;
i74.up = 5;
i75.up = 5;
i76.up = 5;
i77.up = 5;
i78.up = 5;
i79.up = 5;
i80.up = 5;
i81.up = 5;
i82.up = 5;
i83.up = 5;
i84.up = 5;
i85.up = 5;
i86.up = 5;
i87.up = 5;
i88.up = 5;
i89.up = 5;
i90.up = 5;
i91.up = 5;
i92.up = 5;
i93.up = 5;
i94.up = 5;
i95.up = 5;
i96.up = 5;
i97.up = 5;
i98.up = 5;
i99.up = 5;
i100.up = 5;
i101.up = 5;
i102.up = 5;
i103.up = 5;
i104.up = 5;
i105.up = 5;
i106.up = 5;
i107.up = 5;
i108.up = 5;
i109.up = 5;
i110.up = 5;
i111.up = 5;
i112.up = 5;
i113.up = 5;
i114.up = 5;
i115.up = 5;
i116.up = 5;
i117.up = 5;
i118.up = 5;
i119.up = 5;
i120.up = 5;
i121.up = 5;
i122.up = 5;
i123.up = 5;
i124.up = 5;
i125.up = 5;
i126.up = 5;
i127.up = 5;
i128.up = 5;
i129.up = 5;
i130.up = 5;
i131.up = 5;
i132.up = 5;
i133.up = 5;
i134.up = 5;
i135.up = 5;
i136.up = 5;
i137.up = 5;
i138.up = 5;
i139.up = 5;
i140.up = 5;
i141.up = 5;
i142.up = 5;
i143.up = 5;
i144.up = 5;
i145.up = 5;
i146.up = 5;
i147.up = 5;
i148.up = 5;
i149.up = 5;
i150.up = 5;
i151.up = 5;
i152.up = 5;
i153.up = 5;
i154.up = 5;
i155.up = 5;
i156.up = 5;
i157.up = 5;
i158.up = 5;
i159.up = 5;
i160.up = 5;
i161.up = 5;
i162.up = 5;
i163.up = 5;
i164.up = 5;
i165.up = 5;
i166.up = 5;
i167.up = 5;
i168.up = 5;
i169.up = 5;

Model m / all /;

m.limrow=0; m.limcol=0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

m.tolproj = 0.0;
$if not set MIQCP $set MIQCP MIQCP
Solve m using %MIQCP% minimizing objvar;





Website © 2017-2019 by Zuse Institute Berlin. All rights reserved. Imprint.