QPLIB

A Library of Quadratic Programming Instances

Home // browse instances // view statistics // read documentation // download QPLIB archive

QPLIB_10069

Formats gms lp mod qplib
Problem type probtype CBL
Solution point objective value solobjvalue -0.00000000 (gdx, sol)
Solution point infeasibility solinfeasibility 0.0000e+00
Donor donor Andrea Lodi
#Variables nvars 200
#Binary Variables nbinvars 200
#Integer Variables nintvars 0
#Bounded non-binary Variables nboundedvars 0
#Variables with only one bound nsingleboundedvars 0
#Nonlinear Variables nnlvars 200
#Nonlinear Binary Variables nnlbinvars 200
#Nonlinear Integer Variables nnlintvars 0
Objective Sense objsense min
Objective type objtype quadratic
Objective curvature objcurvature convex
#Negative eigenvalues in objective matrix nobjquadnegev  
#Positive eigenvalues in objective matrix nobjquadposev 200
#Nonzeros in Objective nobjnz 200
#Nonlinear Nonzeros in Objective nobjnlnz 200
#Quadratic Terms in Objective nobjquadnz 19464
#Square Terms in Objective nobjquaddiagnz 200
#Constraints ncons 10
#Linear Constraints nlincons 10
#Quadratic Constraints nquadcons 0
#Diagonal Quadratic Constraints ndiagquadcons 0
Constraints curvature conscurvature linear
#Convex Nonlinear Constraints nconvexnlcons 0
#Concave Nonlinear Constraints nconcavenlcons 0
#Indefinite Nonlinear Constraints nindefinitenlcons 0
#Nonzeros in Jacobian njacobiannz 1996
#Nonlinear Nonzeros in Jacobian njacobiannlnz 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz 38728
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz 200
#Blocks in Hessian of Lagrangian nlaghessianblocks 2
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize 1
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize 199
Average blocksize in Hessian of Lagrangian laghessianavgblocksize 100.0
Sparsity Jacobian
Sparsity Lag. Hessian




Website © 2017-2023 by Zuse Institute Berlin and GAMS. All rights reserved. Imprint. QPLIB is licensed under CC-BY 4.0.