QPLIB
A Library of Quadratic Programming Instances
Home // browse instances // view statistics // read documentation // download QPLIB archive [ 1.5G ]QPLIB_2698
Formats | gms lp mod qplib |
Problem type probtype | LCQ |
Solution point objective value solobjvalue | 1201.03846200 (gdx, sol) |
Solution point infeasibility solinfeasibility | 7.2760e-12 |
Donor donor | Ruth Misener |
#Variables nvars | 196 |
#Binary Variables nbinvars | 0 |
#Integer Variables nintvars | 0 |
#Bounded non-binary Variables nboundedvars | 140 |
#Variables with only one bound nsingleboundedvars | 0 |
#Nonlinear Variables nnlvars | 140 |
#Nonlinear Binary Variables nnlbinvars | 0 |
#Nonlinear Integer Variables nnlintvars | 0 |
Objective Sense objsense | min |
Objective type objtype | linear |
Objective curvature objcurvature | linear |
#Negative eigenvalues in objective matrix nobjquadnegev | |
#Positive eigenvalues in objective matrix nobjquadposev | |
#Nonzeros in Objective nobjnz | 10 |
#Nonlinear Nonzeros in Objective nobjnlnz | 0 |
#Quadratic Terms in Objective nobjquadnz | 0 |
#Square Terms in Objective nobjquaddiagnz | 0 |
#Constraints ncons | 47 |
#Linear Constraints nlincons | 36 |
#Quadratic Constraints nquadcons | 11 |
#Diagonal Quadratic Constraints ndiagquadcons | 0 |
Constraints curvature conscurvature | indefinite |
#Convex Nonlinear Constraints nconvexnlcons | 0 |
#Concave Nonlinear Constraints nconcavenlcons | 0 |
#Indefinite Nonlinear Constraints nindefinitenlcons | 11 |
#Nonzeros in Jacobian njacobiannz | 667 |
#Nonlinear Nonzeros in Jacobian njacobiannlnz | 240 |
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz | 240 |
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz | 0 |
#Blocks in Hessian of Lagrangian nlaghessianblocks | 20 |
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize | 2 |
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize | 12 |
Average blocksize in Hessian of Lagrangian laghessianavgblocksize | 7.0 |
Sparsity Jacobian | ![]() |
Sparsity Lag. Hessian | ![]() |
QPLIB_2698.gms
$offlisting * * Equation counts * Total E G L N X C B * 48 47 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 197 197 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 678 438 240 0 * * Solve m using QCP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154 ,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167 ,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180 ,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193 ,x194,x195,x196,x197; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140 ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153 ,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166 ,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179 ,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192 ,x193,x194,x195,x196,x197; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48; e1.. - objvar + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 =E= 0; e2.. - x12 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x22 =E= -90 ; e3.. - x23 - x24 - x25 - x26 - x27 - x28 - x29 - x30 - x31 - x32 - x33 =E= -350; e4.. - x34 - x35 - x36 - x37 - x38 - x39 - x40 - x41 - x42 - x43 - x44 =E= -200; e5.. - x45 - x46 - x47 - x48 - x49 - x50 - x51 - x52 - x53 - x54 - x55 =E= -40 ; e6.. - x56 - x57 - x58 - x59 - x60 - x61 - x62 - x63 - x64 - x65 - x66 =E= -130; e7.. x2 - x13 - x24 - x35 - x46 - x57 - x67 - x68 - x69 - x70 - x71 - x72 - x73 - x74 - x75 - x76 =E= 0; e8.. x3 - x14 - x25 - x36 - x47 - x58 - x77 - x78 - x79 - x80 - x81 - x82 - x83 - x84 - x85 - x86 =E= 0; e9.. x4 - x15 - x26 - x37 - x48 - x59 - x87 - x88 - x89 - x90 - x91 - x92 - x93 - x94 - x95 - x96 =E= 0; e10.. x5 - x16 - x27 - x38 - x49 - x60 - x97 - x98 - x99 - x100 - x101 - x102 - x103 - x104 - x105 - x106 =E= 0; e11.. x6 - x17 - x28 - x39 - x50 - x61 - x107 - x108 - x109 - x110 - x111 - x112 - x113 - x114 - x115 - x116 =E= 0; e12.. x7 - x18 - x29 - x40 - x51 - x62 - x117 - x118 - x119 - x120 - x121 - x122 - x123 - x124 - x125 - x126 =E= 0; e13.. x8 - x19 - x30 - x41 - x52 - x63 - x127 - x128 - x129 - x130 - x131 - x132 - x133 - x134 - x135 - x136 =E= 0; e14.. x9 - x20 - x31 - x42 - x53 - x64 - x137 - x138 - x139 - x140 - x141 - x142 - x143 - x144 - x145 - x146 =E= 0; e15.. x10 - x21 - x32 - x43 - x54 - x65 - x147 - x148 - x149 - x150 - x151 - x152 - x153 - x154 - x155 - x156 =E= 0; e16.. x11 - x22 - x33 - x44 - x55 - x66 - x157 - x158 - x159 - x160 - x161 - x162 - x163 - x164 - x165 - x166 =E= 0; e17.. x2 - x67 - x77 - x87 - x97 - x107 - x117 - x127 - x137 - x147 - x157 - x167 =E= 0; e18.. x3 - x68 - x78 - x88 - x98 - x108 - x118 - x128 - x138 - x148 - x158 - x168 =E= 0; e19.. x4 - x69 - x79 - x89 - x99 - x109 - x119 - x129 - x139 - x149 - x159 - x169 =E= 0; e20.. x5 - x70 - x80 - x90 - x100 - x110 - x120 - x130 - x140 - x150 - x160 - x170 =E= 0; e21.. x6 - x71 - x81 - x91 - x101 - x111 - x121 - x131 - x141 - x151 - x161 - x171 =E= 0; e22.. x7 - x72 - x82 - x92 - x102 - x112 - x122 - x132 - x142 - x152 - x162 - x172 =E= 0; e23.. x8 - x73 - x83 - x93 - x103 - x113 - x123 - x133 - x143 - x153 - x163 - x173 =E= 0; e24.. x9 - x74 - x84 - x94 - x104 - x114 - x124 - x134 - x144 - x154 - x164 - x174 =E= 0; e25.. x10 - x75 - x85 - x95 - x105 - x115 - x125 - x135 - x145 - x155 - x165 - x175 =E= 0; e26.. x11 - x76 - x86 - x96 - x106 - x116 - x126 - x136 - x146 - x156 - x166 - x176 =E= 0; e27.. - x12 - x23 - x34 - x45 - x56 - x167 - x168 - x169 - x170 - x171 - x172 - x173 - x174 - x175 - x176 + x177 =E= 0; e28.. - 0.05*x178 + x179 =E= 0; e29.. - 0.2*x180 + x181 =E= 0; e30.. - 0.15*x182 + x183 =E= 0; e31.. - 0.88*x184 + x185 =E= 0; e32.. - 0.7*x186 + x187 =E= 0; e33.. - 0.4*x188 + x189 =E= 0; e34.. - 0.33*x190 + x191 =E= 0; e35.. - 0.3*x192 + x193 =E= 0; e36.. - 0.4*x194 + x195 =E= 0; e37.. - 0.3*x196 + x197 =E= 0; e38.. x179*x67 - x178*x2 + x181*x68 + x183*x69 + x185*x70 + x187*x71 + x189*x72 + x191*x73 + x193*x74 + x195*x75 + x197*x76 + 330*x13 + 50*x24 + 150*x35 + 240*x46 + 120*x57 =E= 0; e39.. x179*x77 - x180*x3 + x181*x78 + x183*x79 + x185*x80 + x187*x81 + x189*x82 + x191*x83 + x193*x84 + x195*x85 + x197*x86 + 330*x14 + 50*x25 + 150*x36 + 240*x47 + 120*x58 =E= 0; e40.. x179*x87 - x182*x4 + x181*x88 + x183*x89 + x185*x90 + x187*x91 + x189*x92 + x191*x93 + x193*x94 + x195*x95 + x197*x96 + 330*x15 + 50*x26 + 150*x37 + 240*x48 + 120*x59 =E= 0; e41.. x179*x97 - x184*x5 + x181*x98 + x183*x99 + x185*x100 + x187*x101 + x189* x102 + x191*x103 + x193*x104 + x195*x105 + x197*x106 + 330*x16 + 50*x27 + 150*x38 + 240*x49 + 120*x60 =E= 0; e42.. x179*x107 - x186*x6 + x181*x108 + x183*x109 + x185*x110 + x187*x111 + x189*x112 + x191*x113 + x193*x114 + x195*x115 + x197*x116 + 330*x17 + 50*x28 + 150*x39 + 240*x50 + 120*x61 =E= 0; e43.. x179*x117 - x188*x7 + x181*x118 + x183*x119 + x185*x120 + x187*x121 + x189*x122 + x191*x123 + x193*x124 + x195*x125 + x197*x126 + 330*x18 + 50*x29 + 150*x40 + 240*x51 + 120*x62 =E= 0; e44.. x179*x127 - x190*x8 + x181*x128 + x183*x129 + x185*x130 + x187*x131 + x189*x132 + x191*x133 + x193*x134 + x195*x135 + x197*x136 + 330*x19 + 50*x30 + 150*x41 + 240*x52 + 120*x63 =E= 0; e45.. x179*x137 - x192*x9 + x181*x138 + x183*x139 + x185*x140 + x187*x141 + x189*x142 + x191*x143 + x193*x144 + x195*x145 + x197*x146 + 330*x20 + 50*x31 + 150*x42 + 240*x53 + 120*x64 =E= 0; e46.. x179*x147 - x194*x10 + x181*x148 + x183*x149 + x185*x150 + x187*x151 + x189*x152 + x191*x153 + x193*x154 + x195*x155 + x197*x156 + 330*x21 + 50*x32 + 150*x43 + 240*x54 + 120*x65 =E= 0; e47.. x179*x157 - x196*x11 + x181*x158 + x183*x159 + x185*x160 + x187*x161 + x189*x162 + x191*x163 + x193*x164 + x195*x165 + x197*x166 + 330*x22 + 50*x33 + 150*x44 + 240*x55 + 120*x66 =E= 0; e48.. x179*x167 + x181*x168 + x183*x169 + x185*x170 + x187*x171 + x189*x172 + x191*x173 + x193*x174 + x195*x175 + x197*x176 + 330*x12 + 50*x23 + 150*x34 + 240*x45 + 120*x56 - 10*x177 =L= 0; * set non-default bounds x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; x47.up = 1000000; x48.up = 1000000; x49.up = 1000000; x50.up = 1000000; x51.up = 1000000; x52.up = 1000000; x53.up = 1000000; x54.up = 1000000; x55.up = 1000000; x56.up = 1000000; x57.up = 1000000; x58.up = 1000000; x59.up = 1000000; x60.up = 1000000; x61.up = 1000000; x62.up = 1000000; x63.up = 1000000; x64.up = 1000000; x65.up = 1000000; x66.up = 1000000; x67.up = 1000000; x68.up = 1000000; x69.up = 1000000; x70.up = 1000000; x71.up = 1000000; x72.up = 1000000; x73.up = 1000000; x74.up = 1000000; x75.up = 1000000; x76.up = 1000000; x77.up = 1000000; x78.up = 1000000; x79.up = 1000000; x80.up = 1000000; x81.up = 1000000; x82.up = 1000000; x83.up = 1000000; x84.up = 1000000; x85.up = 1000000; x86.up = 1000000; x87.up = 1000000; x88.up = 1000000; x89.up = 1000000; x90.up = 1000000; x91.up = 1000000; x92.up = 1000000; x93.up = 1000000; x94.up = 1000000; x95.up = 1000000; x96.up = 1000000; x97.up = 1000000; x98.up = 1000000; x99.up = 1000000; x100.up = 1000000; x101.up = 1000000; x102.up = 1000000; x103.up = 1000000; x104.up = 1000000; x105.up = 1000000; x106.up = 1000000; x107.up = 1000000; x108.up = 1000000; x109.up = 1000000; x110.up = 1000000; x111.up = 1000000; x112.up = 1000000; x113.up = 1000000; x114.up = 1000000; x115.up = 1000000; x116.up = 1000000; x117.up = 1000000; x118.up = 1000000; x119.up = 1000000; x120.up = 1000000; x121.up = 1000000; x122.up = 1000000; x123.up = 1000000; x124.up = 1000000; x125.up = 1000000; x126.up = 1000000; x127.up = 1000000; x128.up = 1000000; x129.up = 1000000; x130.up = 1000000; x131.up = 1000000; x132.up = 1000000; x133.up = 1000000; x134.up = 1000000; x135.up = 1000000; x136.up = 1000000; x137.up = 1000000; x138.up = 1000000; x139.up = 1000000; x140.up = 1000000; x141.up = 1000000; x142.up = 1000000; x143.up = 1000000; x144.up = 1000000; x145.up = 1000000; x146.up = 1000000; x147.up = 1000000; x148.up = 1000000; x149.up = 1000000; x150.up = 1000000; x151.up = 1000000; x152.up = 1000000; x153.up = 1000000; x154.up = 1000000; x155.up = 1000000; x156.up = 1000000; x157.up = 1000000; x158.up = 1000000; x159.up = 1000000; x160.up = 1000000; x161.up = 1000000; x162.up = 1000000; x163.up = 1000000; x164.up = 1000000; x165.up = 1000000; x166.up = 1000000; x167.up = 1000000; x168.up = 1000000; x169.up = 1000000; x170.up = 1000000; x171.up = 1000000; x172.up = 1000000; x173.up = 1000000; x174.up = 1000000; x175.up = 1000000; x176.up = 1000000; x177.up = 1000000; x178.up = 30; x179.up = 1000000; x180.up = 100; x181.up = 1000000; x182.up = 50; x183.up = 1000000; x184.up = 227; x185.up = 1000000; x186.up = 100; x187.up = 1000000; x188.up = 300; x189.up = 1000000; x190.up = 12; x191.up = 1000000; x192.up = 970; x193.up = 1000000; x194.up = 20; x195.up = 1000000; x196.up = 250; x197.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' m.tolproj = 0.0; $if not set QCP $set QCP QCP Solve m using %QCP% minimizing objvar;
Website © 2017-2021 by Zuse Institute Berlin and GAMS. All rights reserved.
Imprint.
QPLIB is licensed under CC-BY 4.0.