QPLIB
A Library of Quadratic Programming Instances
Home // browse instances // view statistics // read documentation // download QPLIB archive [ 705M ]QPLIB_2738
Formats | gms lp mod qplib |
Problem type probtype | LCQ |
Solution point objective value solobjvalue | -4.28414627 (gdx, sol) |
Solution point infeasibility solinfeasibility | 2.8866e-15 |
Donor donor | Ruth Misener |
#Variables nvars | 199 |
#Binary Variables nbinvars | 0 |
#Integer Variables nintvars | 0 |
#Bounded non-binary Variables nboundedvars | 100 |
#Variables with only one bound nsingleboundedvars | 0 |
#Nonlinear Variables nnlvars | 100 |
#Nonlinear Binary Variables nnlbinvars | 0 |
#Nonlinear Integer Variables nnlintvars | 0 |
Objective Sense objsense | min |
Objective type objtype | linear |
Objective curvature objcurvature | linear |
#Negative eigenvalues in objective matrix nobjquadnegev | |
#Positive eigenvalues in objective matrix nobjquadposev | |
#Nonzeros in Objective nobjnz | 100 |
#Nonlinear Nonzeros in Objective nobjnlnz | 0 |
#Quadratic Terms in Objective nobjquadnz | 0 |
#Square Terms in Objective nobjquaddiagnz | 0 |
#Constraints ncons | 200 |
#Linear Constraints nlincons | 99 |
#Quadratic Constraints nquadcons | 101 |
#Diagonal Quadratic Constraints ndiagquadcons | 1 |
Constraints curvature conscurvature | indefinite |
#Convex Nonlinear Constraints nconvexnlcons | 1 |
#Concave Nonlinear Constraints nconcavenlcons | 0 |
#Indefinite Nonlinear Constraints nindefinitenlcons | 100 |
#Nonzeros in Jacobian njacobiannz | 596 |
#Nonlinear Nonzeros in Jacobian njacobiannlnz | 299 |
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz | 395 |
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz | 1 |
#Blocks in Hessian of Lagrangian nlaghessianblocks | 1 |
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize | 100 |
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize | 100 |
Average blocksize in Hessian of Lagrangian laghessianavgblocksize | 100.0 |
Sparsity Jacobian | ![]() |
Sparsity Lag. Hessian | ![]() |
QPLIB_2738.gms
$offlisting * * Equation counts * Total E G L N X C B * 201 100 0 101 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 200 200 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 697 398 299 0 * * Solve m using QCP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154 ,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167 ,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180 ,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193 ,x194,x195,x196,x197,x198,x199,x200; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201; e1.. - objvar - 0.03141592654*x2 - 0.03141592654*x3 - 0.03141592654*x4 - 0.03141592654*x5 - 0.03141592654*x6 - 0.03141592654*x7 - 0.03141592654*x8 - 0.03141592654*x9 - 0.03141592654*x10 - 0.03141592654*x11 - 0.03141592654*x12 - 0.03141592654*x13 - 0.03141592654*x14 - 0.03141592654*x15 - 0.03141592654*x16 - 0.03141592654*x17 - 0.03141592654*x18 - 0.03141592654*x19 - 0.03141592654*x20 - 0.03141592654*x21 - 0.03141592654*x22 - 0.03141592654*x23 - 0.03141592654*x24 - 0.03141592654*x25 - 0.03141592654*x26 - 0.03141592654*x27 - 0.03141592654*x28 - 0.03141592654*x29 - 0.03141592654*x30 - 0.03141592654*x31 - 0.03141592654*x32 - 0.03141592654*x33 - 0.03141592654*x34 - 0.03141592654*x35 - 0.03141592654*x36 - 0.03141592654*x37 - 0.03141592654*x38 - 0.03141592654*x39 - 0.03141592654*x40 - 0.03141592654*x41 - 0.03141592654*x42 - 0.03141592654*x43 - 0.03141592654*x44 - 0.03141592654*x45 - 0.03141592654*x46 - 0.03141592654*x47 - 0.03141592654*x48 - 0.03141592654*x49 - 0.03141592654*x50 - 0.03141592654*x51 - 0.03141592654*x52 - 0.03141592654*x53 - 0.03141592654*x54 - 0.03141592654*x55 - 0.03141592654*x56 - 0.03141592654*x57 - 0.03141592654*x58 - 0.03141592654*x59 - 0.03141592654*x60 - 0.03141592654*x61 - 0.03141592654*x62 - 0.03141592654*x63 - 0.03141592654*x64 - 0.03141592654*x65 - 0.03141592654*x66 - 0.03141592654*x67 - 0.03141592654*x68 - 0.03141592654*x69 - 0.03141592654*x70 - 0.03141592654*x71 - 0.03141592654*x72 - 0.03141592654*x73 - 0.03141592654*x74 - 0.03141592654*x75 - 0.03141592654*x76 - 0.03141592654*x77 - 0.03141592654*x78 - 0.03141592654*x79 - 0.03141592654*x80 - 0.03141592654*x81 - 0.03141592654*x82 - 0.03141592654*x83 - 0.03141592654*x84 - 0.03141592654*x85 - 0.03141592654*x86 - 0.03141592654*x87 - 0.03141592654*x88 - 0.03141592654*x89 - 0.03141592654*x90 - 0.03141592654*x91 - 0.03141592654*x92 - 0.03141592654*x93 - 0.03141592654*x94 - 0.03141592654*x95 - 0.03141592654*x96 - 0.03141592654*x97 - 0.03141592654*x98 - 0.03141592654*x99 - 0.03141592654*x100 - 0.03141592654*x101 =E= 0; e2.. x2 - x3 + x102 =E= 0; e3.. x3 - x4 + x103 =E= 0; e4.. x4 - x5 + x104 =E= 0; e5.. x5 - x6 + x105 =E= 0; e6.. x6 - x7 + x106 =E= 0; e7.. x7 - x8 + x107 =E= 0; e8.. x8 - x9 + x108 =E= 0; e9.. x9 - x10 + x109 =E= 0; e10.. x10 - x11 + x110 =E= 0; e11.. x11 - x12 + x111 =E= 0; e12.. x12 - x13 + x112 =E= 0; e13.. x13 - x14 + x113 =E= 0; e14.. x14 - x15 + x114 =E= 0; e15.. x15 - x16 + x115 =E= 0; e16.. x16 - x17 + x116 =E= 0; e17.. x17 - x18 + x117 =E= 0; e18.. x18 - x19 + x118 =E= 0; e19.. x19 - x20 + x119 =E= 0; e20.. x20 - x21 + x120 =E= 0; e21.. x21 - x22 + x121 =E= 0; e22.. x22 - x23 + x122 =E= 0; e23.. x23 - x24 + x123 =E= 0; e24.. x24 - x25 + x124 =E= 0; e25.. x25 - x26 + x125 =E= 0; e26.. x26 - x27 + x126 =E= 0; e27.. x27 - x28 + x127 =E= 0; e28.. x28 - x29 + x128 =E= 0; e29.. x29 - x30 + x129 =E= 0; e30.. x30 - x31 + x130 =E= 0; e31.. x31 - x32 + x131 =E= 0; e32.. x32 - x33 + x132 =E= 0; e33.. x33 - x34 + x133 =E= 0; e34.. x34 - x35 + x134 =E= 0; e35.. x35 - x36 + x135 =E= 0; e36.. x36 - x37 + x136 =E= 0; e37.. x37 - x38 + x137 =E= 0; e38.. x38 - x39 + x138 =E= 0; e39.. x39 - x40 + x139 =E= 0; e40.. x40 - x41 + x140 =E= 0; e41.. x41 - x42 + x141 =E= 0; e42.. x42 - x43 + x142 =E= 0; e43.. x43 - x44 + x143 =E= 0; e44.. x44 - x45 + x144 =E= 0; e45.. x45 - x46 + x145 =E= 0; e46.. x46 - x47 + x146 =E= 0; e47.. x47 - x48 + x147 =E= 0; e48.. x48 - x49 + x148 =E= 0; e49.. x49 - x50 + x149 =E= 0; e50.. x50 - x51 + x150 =E= 0; e51.. x51 - x52 + x151 =E= 0; e52.. x52 - x53 + x152 =E= 0; e53.. x53 - x54 + x153 =E= 0; e54.. x54 - x55 + x154 =E= 0; e55.. x55 - x56 + x155 =E= 0; e56.. x56 - x57 + x156 =E= 0; e57.. x57 - x58 + x157 =E= 0; e58.. x58 - x59 + x158 =E= 0; e59.. x59 - x60 + x159 =E= 0; e60.. x60 - x61 + x160 =E= 0; e61.. x61 - x62 + x161 =E= 0; e62.. x62 - x63 + x162 =E= 0; e63.. x63 - x64 + x163 =E= 0; e64.. x64 - x65 + x164 =E= 0; e65.. x65 - x66 + x165 =E= 0; e66.. x66 - x67 + x166 =E= 0; e67.. x67 - x68 + x167 =E= 0; e68.. x68 - x69 + x168 =E= 0; e69.. x69 - x70 + x169 =E= 0; e70.. x70 - x71 + x170 =E= 0; e71.. x71 - x72 + x171 =E= 0; e72.. x72 - x73 + x172 =E= 0; e73.. x73 - x74 + x173 =E= 0; e74.. x74 - x75 + x174 =E= 0; e75.. x75 - x76 + x175 =E= 0; e76.. x76 - x77 + x176 =E= 0; e77.. x77 - x78 + x177 =E= 0; e78.. x78 - x79 + x178 =E= 0; e79.. x79 - x80 + x179 =E= 0; e80.. x80 - x81 + x180 =E= 0; e81.. x81 - x82 + x181 =E= 0; e82.. x82 - x83 + x182 =E= 0; e83.. x83 - x84 + x183 =E= 0; e84.. x84 - x85 + x184 =E= 0; e85.. x85 - x86 + x185 =E= 0; e86.. x86 - x87 + x186 =E= 0; e87.. x87 - x88 + x187 =E= 0; e88.. x88 - x89 + x188 =E= 0; e89.. x89 - x90 + x189 =E= 0; e90.. x90 - x91 + x190 =E= 0; e91.. x91 - x92 + x191 =E= 0; e92.. x92 - x93 + x192 =E= 0; e93.. x93 - x94 + x193 =E= 0; e94.. x94 - x95 + x194 =E= 0; e95.. x95 - x96 + x195 =E= 0; e96.. x96 - x97 + x196 =E= 0; e97.. x97 - x98 + x197 =E= 0; e98.. x98 - x99 + x198 =E= 0; e99.. x99 - x100 + x199 =E= 0; e100.. x100 - x101 + x200 =E= 0; e101.. (-x3*x2) - x2 + 1.9998452*x3 =L= 0; e102.. 3.9996904*x100 - x101*x100 - 2*x101 =L= 0; e103.. 1.9998452*sqr(x101) - 4*x101 =L= 0; e104.. 1.9998452*x4*x2 - x3*x2 - x4*x3 =L= 0; e105.. 1.9998452*x5*x3 - x4*x3 - x5*x4 =L= 0; e106.. 1.9998452*x6*x4 - x5*x4 - x6*x5 =L= 0; e107.. 1.9998452*x7*x5 - x6*x5 - x7*x6 =L= 0; e108.. 1.9998452*x8*x6 - x7*x6 - x8*x7 =L= 0; e109.. 1.9998452*x9*x7 - x8*x7 - x9*x8 =L= 0; e110.. 1.9998452*x10*x8 - x9*x8 - x10*x9 =L= 0; e111.. 1.9998452*x11*x9 - x10*x9 - x11*x10 =L= 0; e112.. 1.9998452*x12*x10 - x11*x10 - x12*x11 =L= 0; e113.. 1.9998452*x13*x11 - x12*x11 - x13*x12 =L= 0; e114.. 1.9998452*x14*x12 - x13*x12 - x14*x13 =L= 0; e115.. 1.9998452*x15*x13 - x14*x13 - x15*x14 =L= 0; e116.. 1.9998452*x16*x14 - x15*x14 - x16*x15 =L= 0; e117.. 1.9998452*x17*x15 - x16*x15 - x17*x16 =L= 0; e118.. 1.9998452*x18*x16 - x17*x16 - x18*x17 =L= 0; e119.. 1.9998452*x19*x17 - x18*x17 - x19*x18 =L= 0; e120.. 1.9998452*x20*x18 - x19*x18 - x20*x19 =L= 0; e121.. 1.9998452*x21*x19 - x20*x19 - x21*x20 =L= 0; e122.. 1.9998452*x22*x20 - x21*x20 - x22*x21 =L= 0; e123.. 1.9998452*x23*x21 - x22*x21 - x23*x22 =L= 0; e124.. 1.9998452*x24*x22 - x23*x22 - x24*x23 =L= 0; e125.. 1.9998452*x25*x23 - x24*x23 - x25*x24 =L= 0; e126.. 1.9998452*x26*x24 - x25*x24 - x26*x25 =L= 0; e127.. 1.9998452*x27*x25 - x26*x25 - x27*x26 =L= 0; e128.. 1.9998452*x28*x26 - x27*x26 - x28*x27 =L= 0; e129.. 1.9998452*x29*x27 - x28*x27 - x29*x28 =L= 0; e130.. 1.9998452*x30*x28 - x29*x28 - x30*x29 =L= 0; e131.. 1.9998452*x31*x29 - x30*x29 - x31*x30 =L= 0; e132.. 1.9998452*x32*x30 - x31*x30 - x32*x31 =L= 0; e133.. 1.9998452*x33*x31 - x32*x31 - x33*x32 =L= 0; e134.. 1.9998452*x34*x32 - x33*x32 - x34*x33 =L= 0; e135.. 1.9998452*x35*x33 - x34*x33 - x35*x34 =L= 0; e136.. 1.9998452*x36*x34 - x35*x34 - x36*x35 =L= 0; e137.. 1.9998452*x37*x35 - x36*x35 - x37*x36 =L= 0; e138.. 1.9998452*x38*x36 - x37*x36 - x38*x37 =L= 0; e139.. 1.9998452*x39*x37 - x38*x37 - x39*x38 =L= 0; e140.. 1.9998452*x40*x38 - x39*x38 - x40*x39 =L= 0; e141.. 1.9998452*x41*x39 - x40*x39 - x41*x40 =L= 0; e142.. 1.9998452*x42*x40 - x41*x40 - x42*x41 =L= 0; e143.. 1.9998452*x43*x41 - x42*x41 - x43*x42 =L= 0; e144.. 1.9998452*x44*x42 - x43*x42 - x44*x43 =L= 0; e145.. 1.9998452*x45*x43 - x44*x43 - x45*x44 =L= 0; e146.. 1.9998452*x46*x44 - x45*x44 - x46*x45 =L= 0; e147.. 1.9998452*x47*x45 - x46*x45 - x47*x46 =L= 0; e148.. 1.9998452*x48*x46 - x47*x46 - x48*x47 =L= 0; e149.. 1.9998452*x49*x47 - x48*x47 - x49*x48 =L= 0; e150.. 1.9998452*x50*x48 - x49*x48 - x50*x49 =L= 0; e151.. 1.9998452*x51*x49 - x50*x49 - x51*x50 =L= 0; e152.. 1.9998452*x52*x50 - x51*x50 - x52*x51 =L= 0; e153.. 1.9998452*x53*x51 - x52*x51 - x53*x52 =L= 0; e154.. 1.9998452*x54*x52 - x53*x52 - x54*x53 =L= 0; e155.. 1.9998452*x55*x53 - x54*x53 - x55*x54 =L= 0; e156.. 1.9998452*x56*x54 - x55*x54 - x56*x55 =L= 0; e157.. 1.9998452*x57*x55 - x56*x55 - x57*x56 =L= 0; e158.. 1.9998452*x58*x56 - x57*x56 - x58*x57 =L= 0; e159.. 1.9998452*x59*x57 - x58*x57 - x59*x58 =L= 0; e160.. 1.9998452*x60*x58 - x59*x58 - x60*x59 =L= 0; e161.. 1.9998452*x61*x59 - x60*x59 - x61*x60 =L= 0; e162.. 1.9998452*x62*x60 - x61*x60 - x62*x61 =L= 0; e163.. 1.9998452*x63*x61 - x62*x61 - x63*x62 =L= 0; e164.. 1.9998452*x64*x62 - x63*x62 - x64*x63 =L= 0; e165.. 1.9998452*x65*x63 - x64*x63 - x65*x64 =L= 0; e166.. 1.9998452*x66*x64 - x65*x64 - x66*x65 =L= 0; e167.. 1.9998452*x67*x65 - x66*x65 - x67*x66 =L= 0; e168.. 1.9998452*x68*x66 - x67*x66 - x68*x67 =L= 0; e169.. 1.9998452*x69*x67 - x68*x67 - x69*x68 =L= 0; e170.. 1.9998452*x70*x68 - x69*x68 - x70*x69 =L= 0; e171.. 1.9998452*x71*x69 - x70*x69 - x71*x70 =L= 0; e172.. 1.9998452*x72*x70 - x71*x70 - x72*x71 =L= 0; e173.. 1.9998452*x73*x71 - x72*x71 - x73*x72 =L= 0; e174.. 1.9998452*x74*x72 - x73*x72 - x74*x73 =L= 0; e175.. 1.9998452*x75*x73 - x74*x73 - x75*x74 =L= 0; e176.. 1.9998452*x76*x74 - x75*x74 - x76*x75 =L= 0; e177.. 1.9998452*x77*x75 - x76*x75 - x77*x76 =L= 0; e178.. 1.9998452*x78*x76 - x77*x76 - x78*x77 =L= 0; e179.. 1.9998452*x79*x77 - x78*x77 - x79*x78 =L= 0; e180.. 1.9998452*x80*x78 - x79*x78 - x80*x79 =L= 0; e181.. 1.9998452*x81*x79 - x80*x79 - x81*x80 =L= 0; e182.. 1.9998452*x82*x80 - x81*x80 - x82*x81 =L= 0; e183.. 1.9998452*x83*x81 - x82*x81 - x83*x82 =L= 0; e184.. 1.9998452*x84*x82 - x83*x82 - x84*x83 =L= 0; e185.. 1.9998452*x85*x83 - x84*x83 - x85*x84 =L= 0; e186.. 1.9998452*x86*x84 - x85*x84 - x86*x85 =L= 0; e187.. 1.9998452*x87*x85 - x86*x85 - x87*x86 =L= 0; e188.. 1.9998452*x88*x86 - x87*x86 - x88*x87 =L= 0; e189.. 1.9998452*x89*x87 - x88*x87 - x89*x88 =L= 0; e190.. 1.9998452*x90*x88 - x89*x88 - x90*x89 =L= 0; e191.. 1.9998452*x91*x89 - x90*x89 - x91*x90 =L= 0; e192.. 1.9998452*x92*x90 - x91*x90 - x92*x91 =L= 0; e193.. 1.9998452*x93*x91 - x92*x91 - x93*x92 =L= 0; e194.. 1.9998452*x94*x92 - x93*x92 - x94*x93 =L= 0; e195.. 1.9998452*x95*x93 - x94*x93 - x95*x94 =L= 0; e196.. 1.9998452*x96*x94 - x95*x94 - x96*x95 =L= 0; e197.. 1.9998452*x97*x95 - x96*x95 - x97*x96 =L= 0; e198.. 1.9998452*x98*x96 - x97*x96 - x98*x97 =L= 0; e199.. 1.9998452*x99*x97 - x98*x97 - x99*x98 =L= 0; e200.. 1.9998452*x100*x98 - x99*x98 - x100*x99 =L= 0; e201.. 1.9998452*x101*x99 - x100*x99 - x101*x100 =L= 0; * set non-default bounds x2.lo = 1; x2.up = 1.000154824; x3.lo = 1; x3.up = 2; x4.lo = 1; x4.up = 2; x5.lo = 1; x5.up = 2; x6.lo = 1; x6.up = 2; x7.lo = 1; x7.up = 2; x8.lo = 1; x8.up = 2; x9.lo = 1; x9.up = 2; x10.lo = 1; x10.up = 2; x11.lo = 1; x11.up = 2; x12.lo = 1; x12.up = 2; x13.lo = 1; x13.up = 2; x14.lo = 1; x14.up = 2; x15.lo = 1; x15.up = 2; x16.lo = 1; x16.up = 2; x17.lo = 1; x17.up = 2; x18.lo = 1; x18.up = 2; x19.lo = 1; x19.up = 2; x20.lo = 1; x20.up = 2; x21.lo = 1; x21.up = 2; x22.lo = 1; x22.up = 2; x23.lo = 1; x23.up = 2; x24.lo = 1; x24.up = 2; x25.lo = 1; x25.up = 2; x26.lo = 1; x26.up = 2; x27.lo = 1; x27.up = 2; x28.lo = 1; x28.up = 2; x29.lo = 1; x29.up = 2; x30.lo = 1; x30.up = 2; x31.lo = 1; x31.up = 2; x32.lo = 1; x32.up = 2; x33.lo = 1; x33.up = 2; x34.lo = 1; x34.up = 2; x35.lo = 1; x35.up = 2; x36.lo = 1; x36.up = 2; x37.lo = 1; x37.up = 2; x38.lo = 1; x38.up = 2; x39.lo = 1; x39.up = 2; x40.lo = 1; x40.up = 2; x41.lo = 1; x41.up = 2; x42.lo = 1; x42.up = 2; x43.lo = 1; x43.up = 2; x44.lo = 1; x44.up = 2; x45.lo = 1; x45.up = 2; x46.lo = 1; x46.up = 2; x47.lo = 1; x47.up = 2; x48.lo = 1; x48.up = 2; x49.lo = 1; x49.up = 2; x50.lo = 1; x50.up = 2; x51.lo = 1; x51.up = 2; x52.lo = 1; x52.up = 2; x53.lo = 1; x53.up = 2; x54.lo = 1; x54.up = 2; x55.lo = 1; x55.up = 2; x56.lo = 1; x56.up = 2; x57.lo = 1; x57.up = 2; x58.lo = 1; x58.up = 2; x59.lo = 1; x59.up = 2; x60.lo = 1; x60.up = 2; x61.lo = 1; x61.up = 2; x62.lo = 1; x62.up = 2; x63.lo = 1; x63.up = 2; x64.lo = 1; x64.up = 2; x65.lo = 1; x65.up = 2; x66.lo = 1; x66.up = 2; x67.lo = 1; x67.up = 2; x68.lo = 1; x68.up = 2; x69.lo = 1; x69.up = 2; x70.lo = 1; x70.up = 2; x71.lo = 1; x71.up = 2; x72.lo = 1; x72.up = 2; x73.lo = 1; x73.up = 2; x74.lo = 1; x74.up = 2; x75.lo = 1; x75.up = 2; x76.lo = 1; x76.up = 2; x77.lo = 1; x77.up = 2; x78.lo = 1; x78.up = 2; x79.lo = 1; x79.up = 2; x80.lo = 1; x80.up = 2; x81.lo = 1; x81.up = 2; x82.lo = 1; x82.up = 2; x83.lo = 1; x83.up = 2; x84.lo = 1; x84.up = 2; x85.lo = 1; x85.up = 2; x86.lo = 1; x86.up = 2; x87.lo = 1; x87.up = 2; x88.lo = 1; x88.up = 2; x89.lo = 1; x89.up = 2; x90.lo = 1; x90.up = 2; x91.lo = 1; x91.up = 2; x92.lo = 1; x92.up = 2; x93.lo = 1; x93.up = 2; x94.lo = 1; x94.up = 2; x95.lo = 1; x95.up = 2; x96.lo = 1; x96.up = 2; x97.lo = 1; x97.up = 2; x98.lo = 1; x98.up = 2; x99.lo = 1; x99.up = 2; x100.lo = 1; x100.up = 2; x101.lo = 1.981337073; x101.up = 2; x103.lo = -0.01866292665; x103.up = 0.01866292665; x104.lo = -0.01866292665; x104.up = 0.01866292665; x105.lo = -0.01866292665; x105.up = 0.01866292665; x106.lo = -0.01866292665; x106.up = 0.01866292665; x107.lo = -0.01866292665; x107.up = 0.01866292665; x108.lo = -0.01866292665; x108.up = 0.01866292665; x109.lo = -0.01866292665; x109.up = 0.01866292665; x110.lo = -0.01866292665; x110.up = 0.01866292665; x111.lo = -0.01866292665; x111.up = 0.01866292665; x112.lo = -0.01866292665; x112.up = 0.01866292665; x113.lo = -0.01866292665; x113.up = 0.01866292665; x114.lo = -0.01866292665; x114.up = 0.01866292665; x115.lo = -0.01866292665; x115.up = 0.01866292665; x116.lo = -0.01866292665; x116.up = 0.01866292665; x117.lo = -0.01866292665; x117.up = 0.01866292665; x118.lo = -0.01866292665; x118.up = 0.01866292665; x119.lo = -0.01866292665; x119.up = 0.01866292665; x120.lo = -0.01866292665; x120.up = 0.01866292665; x121.lo = -0.01866292665; x121.up = 0.01866292665; x122.lo = -0.01866292665; x122.up = 0.01866292665; x123.lo = -0.01866292665; x123.up = 0.01866292665; x124.lo = -0.01866292665; x124.up = 0.01866292665; x125.lo = -0.01866292665; x125.up = 0.01866292665; x126.lo = -0.01866292665; x126.up = 0.01866292665; x127.lo = -0.01866292665; x127.up = 0.01866292665; x128.lo = -0.01866292665; x128.up = 0.01866292665; x129.lo = -0.01866292665; x129.up = 0.01866292665; x130.lo = -0.01866292665; x130.up = 0.01866292665; x131.lo = -0.01866292665; x131.up = 0.01866292665; x132.lo = -0.01866292665; x132.up = 0.01866292665; x133.lo = -0.01866292665; x133.up = 0.01866292665; x134.lo = -0.01866292665; x134.up = 0.01866292665; x135.lo = -0.01866292665; x135.up = 0.01866292665; x136.lo = -0.01866292665; x136.up = 0.01866292665; x137.lo = -0.01866292665; x137.up = 0.01866292665; x138.lo = -0.01866292665; x138.up = 0.01866292665; x139.lo = -0.01866292665; x139.up = 0.01866292665; x140.lo = -0.01866292665; x140.up = 0.01866292665; x141.lo = -0.01866292665; x141.up = 0.01866292665; x142.lo = -0.01866292665; x142.up = 0.01866292665; x143.lo = -0.01866292665; x143.up = 0.01866292665; x144.lo = -0.01866292665; x144.up = 0.01866292665; x145.lo = -0.01866292665; x145.up = 0.01866292665; x146.lo = -0.01866292665; x146.up = 0.01866292665; x147.lo = -0.01866292665; x147.up = 0.01866292665; x148.lo = -0.01866292665; x148.up = 0.01866292665; x149.lo = -0.01866292665; x149.up = 0.01866292665; x150.lo = -0.01866292665; x150.up = 0.01866292665; x151.lo = -0.01866292665; x151.up = 0.01866292665; x152.lo = -0.01866292665; x152.up = 0.01866292665; x153.lo = -0.01866292665; x153.up = 0.01866292665; x154.lo = -0.01866292665; x154.up = 0.01866292665; x155.lo = -0.01866292665; x155.up = 0.01866292665; x156.lo = -0.01866292665; x156.up = 0.01866292665; x157.lo = -0.01866292665; x157.up = 0.01866292665; x158.lo = -0.01866292665; x158.up = 0.01866292665; x159.lo = -0.01866292665; x159.up = 0.01866292665; x160.lo = -0.01866292665; x160.up = 0.01866292665; x161.lo = -0.01866292665; x161.up = 0.01866292665; x162.lo = -0.01866292665; x162.up = 0.01866292665; x163.lo = -0.01866292665; x163.up = 0.01866292665; x164.lo = -0.01866292665; x164.up = 0.01866292665; x165.lo = -0.01866292665; x165.up = 0.01866292665; x166.lo = -0.01866292665; x166.up = 0.01866292665; x167.lo = -0.01866292665; x167.up = 0.01866292665; x168.lo = -0.01866292665; x168.up = 0.01866292665; x169.lo = -0.01866292665; x169.up = 0.01866292665; x170.lo = -0.01866292665; x170.up = 0.01866292665; x171.lo = -0.01866292665; x171.up = 0.01866292665; x172.lo = -0.01866292665; x172.up = 0.01866292665; x173.lo = -0.01866292665; x173.up = 0.01866292665; x174.lo = -0.01866292665; x174.up = 0.01866292665; x175.lo = -0.01866292665; x175.up = 0.01866292665; x176.lo = -0.01866292665; x176.up = 0.01866292665; x177.lo = -0.01866292665; x177.up = 0.01866292665; x178.lo = -0.01866292665; x178.up = 0.01866292665; x179.lo = -0.01866292665; x179.up = 0.01866292665; x180.lo = -0.01866292665; x180.up = 0.01866292665; x181.lo = -0.01866292665; x181.up = 0.01866292665; x182.lo = -0.01866292665; x182.up = 0.01866292665; x183.lo = -0.01866292665; x183.up = 0.01866292665; x184.lo = -0.01866292665; x184.up = 0.01866292665; x185.lo = -0.01866292665; x185.up = 0.01866292665; x186.lo = -0.01866292665; x186.up = 0.01866292665; x187.lo = -0.01866292665; x187.up = 0.01866292665; x188.lo = -0.01866292665; x188.up = 0.01866292665; x189.lo = -0.01866292665; x189.up = 0.01866292665; x190.lo = -0.01866292665; x190.up = 0.01866292665; x191.lo = -0.01866292665; x191.up = 0.01866292665; x192.lo = -0.01866292665; x192.up = 0.01866292665; x193.lo = -0.01866292665; x193.up = 0.01866292665; x194.lo = -0.01866292665; x194.up = 0.01866292665; x195.lo = -0.01866292665; x195.up = 0.01866292665; x196.lo = -0.01866292665; x196.up = 0.01866292665; x197.lo = -0.01866292665; x197.up = 0.01866292665; x198.lo = -0.01866292665; x198.up = 0.01866292665; x199.lo = -0.01866292665; x199.up = 0.01866292665; x200.lo = -0.01866292665; x200.up = 0.01866292665; * set non-default levels x2.l = 1; x3.l = 1; x4.l = 1; x5.l = 1; x6.l = 1; x7.l = 1; x8.l = 1; x9.l = 1; x10.l = 1; x11.l = 1; x12.l = 1; x13.l = 1; x14.l = 1; x15.l = 1; x16.l = 1; x17.l = 1; x18.l = 1; x19.l = 1; x20.l = 1; x21.l = 1; x22.l = 1; x23.l = 1; x24.l = 1; x25.l = 1; x26.l = 1; x27.l = 1; x28.l = 1; x29.l = 1; x30.l = 1; x31.l = 1; x32.l = 1; x33.l = 1; x34.l = 1; x35.l = 1; x36.l = 1; x37.l = 1; x38.l = 1; x39.l = 1; x40.l = 1; x41.l = 1; x42.l = 1; x43.l = 1; x44.l = 1; x45.l = 1; x46.l = 1; x47.l = 1; x48.l = 1; x49.l = 1; x50.l = 1; x51.l = 1; x52.l = 1; x53.l = 1; x54.l = 1; x55.l = 1; x56.l = 1; x57.l = 1; x58.l = 1; x59.l = 1; x60.l = 1; x61.l = 1; x62.l = 1; x63.l = 1; x64.l = 1; x65.l = 1; x66.l = 1; x67.l = 1; x68.l = 1; x69.l = 1; x70.l = 1; x71.l = 1; x72.l = 1; x73.l = 1; x74.l = 1; x75.l = 1; x76.l = 1; x77.l = 1; x78.l = 1; x79.l = 1; x80.l = 1; x81.l = 1; x82.l = 1; x83.l = 1; x84.l = 1; x85.l = 1; x86.l = 1; x87.l = 1; x88.l = 1; x89.l = 1; x90.l = 1; x91.l = 1; x92.l = 1; x93.l = 1; x94.l = 1; x95.l = 1; x96.l = 1; x97.l = 1; x98.l = 1; x99.l = 1; x100.l = 1; x101.l = 1.981337073; Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' m.tolproj = 0.0; $if not set QCP $set QCP QCP Solve m using %QCP% minimizing objvar;
Website © 2017-2021 by Zuse Institute Berlin and GAMS. All rights reserved.
Imprint.
QPLIB is licensed under CC-BY 4.0.