QPLIB
A Library of Quadratic Programming Instances
Home // browse instances // view statistics // read documentation // download QPLIB archiveQPLIB_2882
Formats | gms lp mod qplib |
Problem type probtype | LMQ |
Solution point objective value solobjvalue | 22.38189652 (gdx, sol) |
Solution point infeasibility solinfeasibility | 5.3291e-15 |
Donor donor | Ruth Misener |
#Variables nvars | 144 |
#Binary Variables nbinvars | 56 |
#Integer Variables nintvars | 0 |
#Bounded non-binary Variables nboundedvars | 16 |
#Variables with only one bound nsingleboundedvars | 0 |
#Nonlinear Variables nnlvars | 16 |
#Nonlinear Binary Variables nnlbinvars | 0 |
#Nonlinear Integer Variables nnlintvars | 0 |
Objective Sense objsense | min |
Objective type objtype | linear |
Objective curvature objcurvature | linear |
#Negative eigenvalues in objective matrix nobjquadnegev | |
#Positive eigenvalues in objective matrix nobjquadposev | |
#Nonzeros in Objective nobjnz | 14 |
#Nonlinear Nonzeros in Objective nobjnlnz | 0 |
#Quadratic Terms in Objective nobjquadnz | 0 |
#Square Terms in Objective nobjquaddiagnz | 0 |
#Constraints ncons | 273 |
#Linear Constraints nlincons | 257 |
#Quadratic Constraints nquadcons | 16 |
#Diagonal Quadratic Constraints ndiagquadcons | 0 |
Constraints curvature conscurvature | indefinite |
#Convex Nonlinear Constraints nconvexnlcons | 0 |
#Concave Nonlinear Constraints nconcavenlcons | 0 |
#Indefinite Nonlinear Constraints nindefinitenlcons | 16 |
#Nonzeros in Jacobian njacobiannz | 1106 |
#Nonlinear Nonzeros in Jacobian njacobiannlnz | 32 |
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz | 16 |
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz | 0 |
#Blocks in Hessian of Lagrangian nlaghessianblocks | 8 |
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize | 2 |
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize | 2 |
Average blocksize in Hessian of Lagrangian laghessianavgblocksize | 2.0 |
Sparsity Jacobian | |
Sparsity Lag. Hessian |
Website © 2017-2023 by Zuse Institute Berlin and GAMS. All rights reserved.
Imprint.
QPLIB is licensed under CC-BY 4.0.