QPLIB
A Library of Quadratic Programming Instances
Home // browse instances // view statistics // read documentation // download QPLIB archive [ 1.5G ]QPLIB_3225
Formats | gms lp mod qplib |
Problem type probtype | LCQ |
Solution point objective value solobjvalue | 511.52671240 (gdx, sol) |
Solution point infeasibility solinfeasibility | 1.0232e-12 |
Donor donor | Ruth Misener |
#Variables nvars | 136 |
#Binary Variables nbinvars | 0 |
#Integer Variables nintvars | 0 |
#Bounded non-binary Variables nboundedvars | 80 |
#Variables with only one bound nsingleboundedvars | 0 |
#Nonlinear Variables nnlvars | 80 |
#Nonlinear Binary Variables nnlbinvars | 0 |
#Nonlinear Integer Variables nnlintvars | 0 |
Objective Sense objsense | min |
Objective type objtype | linear |
Objective curvature objcurvature | linear |
#Negative eigenvalues in objective matrix nobjquadnegev | |
#Positive eigenvalues in objective matrix nobjquadposev | |
#Nonzeros in Objective nobjnz | 28 |
#Nonlinear Nonzeros in Objective nobjnlnz | 0 |
#Quadratic Terms in Objective nobjquadnz | 0 |
#Square Terms in Objective nobjquaddiagnz | 0 |
#Constraints ncons | 80 |
#Linear Constraints nlincons | 14 |
#Quadratic Constraints nquadcons | 66 |
#Diagonal Quadratic Constraints ndiagquadcons | 0 |
Constraints curvature conscurvature | indefinite |
#Convex Nonlinear Constraints nconvexnlcons | 0 |
#Concave Nonlinear Constraints nconcavenlcons | 0 |
#Indefinite Nonlinear Constraints nindefinitenlcons | 66 |
#Nonzeros in Jacobian njacobiannz | 849 |
#Nonlinear Nonzeros in Jacobian njacobiannlnz | 456 |
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz | 432 |
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz | 0 |
#Blocks in Hessian of Lagrangian nlaghessianblocks | 4 |
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize | 20 |
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize | 20 |
Average blocksize in Hessian of Lagrangian laghessianavgblocksize | 20.0 |
Sparsity Jacobian | ![]() |
Sparsity Lag. Hessian | ![]() |
QPLIB_3225.gms
$offlisting * * Equation counts * Total E G L N X C B * 81 63 18 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 137 137 0 0 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 878 422 456 0 * * Solve m using QCP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81; e1.. - objvar + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 =E= 0; e2.. - x2 - x9 - x16 - x23 + x78 - x79 - x80 - x81 - x82 - x83 - x84 - x85 =E= 0; e3.. - x3 - x10 - x17 - x24 + x86 - x87 - x88 - x89 - x90 - x91 - x92 - x93 =E= 0; e4.. - x4 - x11 - x18 - x25 + x94 - x95 - x96 - x97 - x98 - x99 - x100 - x101 =E= 0; e5.. - x5 - x12 - x19 - x26 + x102 - x103 - x104 - x105 - x106 - x107 - x108 - x109 =E= 0; e6.. - x6 - x13 - x20 - x27 - x110 - x111 - x112 - x113 - x114 - x115 - x116 =E= -120; e7.. - x7 - x14 - x21 - x28 - x117 - x118 - x119 - x120 - x121 - x122 - x123 =E= -68; e8.. - x8 - x15 - x22 - x29 - x124 - x125 - x126 - x127 - x128 - x129 - x130 =E= -130; e9.. x78 - x79 - x87 - x95 - x103 - x110 - x117 - x124 - x131 =E= 0; e10.. - x80 + x86 - x88 - x96 - x104 - x111 - x118 - x125 - x132 =E= 0; e11.. - x81 - x89 + x94 - x97 - x105 - x112 - x119 - x126 - x133 =E= 0; e12.. - x82 - x90 - x98 + x102 - x106 - x113 - x120 - x127 - x134 =E= 0; e13.. - x83 - x91 - x99 - x107 - x114 - x121 - x128 - x135 =E= -80; e14.. - x84 - x92 - x100 - x108 - x115 - x122 - x129 - x136 =E= -58; e15.. - x85 - x93 - x101 - x109 - x116 - x123 - x130 - x137 =E= -120; e16.. x78*x30 - x79*x54 - x80*x60 - x81*x66 - x82*x72 - 4*x2 - 4*x9 - 4*x23 - 850*x83 - 112*x84 - 491*x85 =E= 0; e17.. x78*x31 - x79*x55 - x80*x61 - x81*x67 - x82*x73 - 5*x2 - 6*x9 - 6*x16 - 3560*x83 - 429*x84 - 476*x85 =E= 0; e18.. x78*x32 - x79*x56 - x80*x62 - x81*x68 - x82*x74 - 2*x9 - 4*x16 - 2*x23 - 400*x83 - 505*x84 - 197*x85 =E= 0; e19.. x78*x33 - x79*x57 - x80*x63 - x81*x69 - x82*x75 - 8*x2 - 7*x9 - 5*x16 - 7*x23 - 56*x83 - 266*x84 - 493*x85 =E= 0; e20.. x78*x34 - x79*x58 - x80*x64 - x81*x70 - x82*x76 - 2*x9 - x16 - 2*x23 - 436*x83 - 481*x84 - 399*x85 =E= 0; e21.. x78*x35 - x79*x59 - x80*x65 - x81*x71 - x82*x77 - 4*x2 - x16 - 90*x83 - 505*x84 - 495*x85 =E= 0; e22.. x86*x36 - x87*x54 - x88*x60 - x89*x66 - x90*x72 - 4*x3 - 4*x10 - 4*x24 - 850*x91 - 112*x92 - 491*x93 =E= 0; e23.. x86*x37 - x87*x55 - x88*x61 - x89*x67 - x90*x73 - 5*x3 - 6*x10 - 6*x17 - 3560*x91 - 429*x92 - 476*x93 =E= 0; e24.. x86*x38 - x87*x56 - x88*x62 - x89*x68 - x90*x74 - 2*x10 - 4*x17 - 2*x24 - 400*x91 - 505*x92 - 197*x93 =E= 0; e25.. x86*x39 - x87*x57 - x88*x63 - x89*x69 - x90*x75 - 8*x3 - 7*x10 - 5*x17 - 7*x24 - 56*x91 - 266*x92 - 493*x93 =E= 0; e26.. x86*x40 - x87*x58 - x88*x64 - x89*x70 - x90*x76 - 2*x10 - x17 - 2*x24 - 436*x91 - 481*x92 - 399*x93 =E= 0; e27.. x86*x41 - x87*x59 - x88*x65 - x89*x71 - x90*x77 - 4*x3 - x17 - 90*x91 - 505*x92 - 495*x93 =E= 0; e28.. x94*x42 - x95*x54 - x96*x60 - x97*x66 - x98*x72 - 4*x4 - 4*x11 - 4*x25 - 850*x99 - 112*x100 - 491*x101 =E= 0; e29.. x94*x43 - x95*x55 - x96*x61 - x97*x67 - x98*x73 - 5*x4 - 6*x11 - 6*x18 - 3560*x99 - 429*x100 - 476*x101 =E= 0; e30.. x94*x44 - x95*x56 - x96*x62 - x97*x68 - x98*x74 - 2*x11 - 4*x18 - 2*x25 - 400*x99 - 505*x100 - 197*x101 =E= 0; e31.. x94*x45 - x95*x57 - x96*x63 - x97*x69 - x98*x75 - 8*x4 - 7*x11 - 5*x18 - 7*x25 - 56*x99 - 266*x100 - 493*x101 =E= 0; e32.. x94*x46 - x95*x58 - x96*x64 - x97*x70 - x98*x76 - 2*x11 - x18 - 2*x25 - 436*x99 - 481*x100 - 399*x101 =E= 0; e33.. x94*x47 - x95*x59 - x96*x65 - x97*x71 - x98*x77 - 4*x4 - x18 - 90*x99 - 505*x100 - 495*x101 =E= 0; e34.. x102*x48 - x103*x54 - x104*x60 - x105*x66 - x106*x72 - 4*x5 - 4*x12 - 4*x26 - 850*x107 - 112*x108 - 491*x109 =E= 0; e35.. x102*x49 - x103*x55 - x104*x61 - x105*x67 - x106*x73 - 5*x5 - 6*x12 - 6*x19 - 3560*x107 - 429*x108 - 476*x109 =E= 0; e36.. x102*x50 - x103*x56 - x104*x62 - x105*x68 - x106*x74 - 2*x12 - 4*x19 - 2*x26 - 400*x107 - 505*x108 - 197*x109 =E= 0; e37.. x102*x51 - x103*x57 - x104*x63 - x105*x69 - x106*x75 - 8*x5 - 7*x12 - 5*x19 - 7*x26 - 56*x107 - 266*x108 - 493*x109 =E= 0; e38.. x102*x52 - x103*x58 - x104*x64 - x105*x70 - x106*x76 - 2*x12 - x19 - 2*x26 - 436*x107 - 481*x108 - 399*x109 =E= 0; e39.. x102*x53 - x103*x59 - x104*x65 - x105*x71 - x106*x77 - 4*x5 - x19 - 90*x107 - 505*x108 - 495*x109 =E= 0; e40.. (-x110*x54) - x111*x60 - x112*x66 - x113*x72 - 4*x6 - 4*x13 - 4*x27 - 850*x114 - 112*x115 - 491*x116 =G= -42000; e41.. (-x110*x55) - x111*x61 - x112*x67 - x113*x73 - 5*x6 - 6*x13 - 6*x20 - 3560*x114 - 429*x115 - 476*x116 =G= -5760; e42.. (-x110*x56) - x111*x62 - x112*x68 - x113*x74 - 2*x13 - 4*x20 - 2*x27 - 400*x114 - 505*x115 - 197*x116 =G= -31200; e43.. (-x110*x57) - x111*x63 - x112*x69 - x113*x75 - 8*x6 - 7*x13 - 5*x20 - 7*x27 - 56*x114 - 266*x115 - 493*x116 =G= -2520; e44.. (-x110*x58) - x111*x64 - x112*x70 - x113*x76 - 2*x13 - x20 - 2*x27 - 436*x114 - 481*x115 - 399*x116 =G= -33360; e45.. (-x110*x59) - x111*x65 - x112*x71 - x113*x77 - 4*x6 - x20 - 90*x114 - 505*x115 - 495*x116 =G= -1440; e46.. (-x117*x54) - x118*x60 - x119*x66 - x120*x72 - 4*x7 - 4*x14 - 4*x28 - 850*x121 - 112*x122 - 491*x123 =G= -2924; e47.. (-x117*x55) - x118*x61 - x119*x67 - x120*x73 - 5*x7 - 6*x14 - 6*x21 - 3560*x121 - 429*x122 - 476*x123 =G= -23256; e48.. (-x117*x56) - x118*x62 - x119*x68 - x120*x74 - 2*x14 - 4*x21 - 2*x28 - 400*x121 - 505*x122 - 197*x123 =G= -15776; e49.. (-x117*x57) - x118*x63 - x119*x69 - x120*x75 - 8*x7 - 7*x14 - 5*x21 - 7*x28 - 56*x121 - 266*x122 - 493*x123 =G= -18020; e50.. (-x117*x58) - x118*x64 - x119*x70 - x120*x76 - 2*x14 - x21 - 2*x28 - 436*x121 - 481*x122 - 399*x123 =G= -26724; e51.. (-x117*x59) - x118*x65 - x119*x71 - x120*x77 - 4*x7 - x21 - 90*x121 - 505*x122 - 495*x123 =G= -20332; e52.. (-x124*x54) - x125*x60 - x126*x66 - x127*x72 - 4*x8 - 4*x15 - 4*x29 - 850*x128 - 112*x129 - 491*x130 =G= -58760; e53.. (-x124*x55) - x125*x61 - x126*x67 - x127*x73 - 5*x8 - 6*x15 - 6*x22 - 3560*x128 - 429*x129 - 476*x130 =G= -8320; e54.. (-x124*x56) - x125*x62 - x126*x68 - x127*x74 - 2*x15 - 4*x22 - 2*x29 - 400*x128 - 505*x129 - 197*x130 =G= -1300; e55.. (-x124*x57) - x125*x63 - x126*x69 - x127*x75 - 8*x8 - 7*x15 - 5*x22 - 7*x29 - 56*x128 - 266*x129 - 493*x130 =G= -43420; e56.. (-x124*x58) - x125*x64 - x126*x70 - x127*x76 - 2*x15 - x22 - 2*x29 - 436*x128 - 481*x129 - 399*x130 =G= -18590; e57.. (-x124*x59) - x125*x65 - x126*x71 - x127*x77 - 4*x8 - x22 - 90*x128 - 505*x129 - 495*x130 =G= -31720; e58.. x78*x30 - x78*x54 =E= -6016; e59.. x78*x31 - x78*x55 =E= -22272; e60.. x78*x32 - x78*x56 =E= -15744; e61.. x78*x33 - x78*x57 =E= -256; e62.. x78*x34 - x78*x58 =E= -10752; e63.. x78*x35 - x78*x59 =E= -6400; e64.. x86*x36 - x86*x60 =E= -4250; e65.. x86*x37 - x86*x61 =E= -3230; e66.. x86*x38 - x86*x62 =E= -1870; e67.. x86*x39 - x86*x63 =E= -84796; e68.. x86*x40 - x86*x64 =E= -884; e69.. x86*x41 - x86*x65 =E= -3332; e70.. x94*x42 - x94*x66 =E= -10080; e71.. x94*x43 - x94*x67 =E= -4914; e72.. x94*x44 - x94*x68 =E= -46242; e73.. x94*x45 - x94*x69 =E= -5418; e74.. x94*x46 - x94*x70 =E= -16506; e75.. x94*x47 - x94*x71 =E= -4284; e76.. x102*x48 - x102*x72 =E= -3456; e77.. x102*x49 - x102*x73 =E= -43776; e78.. x102*x50 - x102*x74 =E= -39040; e79.. x102*x51 - x102*x75 =E= -52224; e80.. x102*x52 - x102*x76 =E= -17280; e81.. x102*x53 - x102*x77 =E= -27008; * set non-default bounds x2.up = 100000; x3.up = 100000; x4.up = 100000; x5.up = 100000; x6.up = 100000; x7.up = 100000; x8.up = 100000; x9.up = 100000; x10.up = 100000; x11.up = 100000; x12.up = 100000; x13.up = 100000; x14.up = 100000; x15.up = 100000; x16.up = 100000; x17.up = 100000; x18.up = 100000; x19.up = 100000; x20.up = 100000; x21.up = 100000; x22.up = 100000; x23.up = 100000; x24.up = 100000; x25.up = 100000; x26.up = 100000; x27.up = 100000; x28.up = 100000; x29.up = 100000; x30.up = 45; x31.up = 52; x32.up = 189; x33.up = 33; x34.up = 210; x35.up = 24; x36.up = 120; x37.up = 30; x38.up = 30; x39.up = 12234; x40.up = 98; x41.up = 656; x42.up = 142; x43.up = 420; x44.up = 200; x45.up = 13; x46.up = 637; x47.up = 24; x48.up = 20; x49.up = 25; x50.up = 15; x51.up = 25; x52.up = 454; x53.up = 256; x54.up = 139; x55.up = 400; x56.up = 435; x57.up = 37; x58.up = 378; x59.up = 124; x60.up = 245; x61.up = 125; x62.up = 85; x63.up = 14728; x64.up = 124; x65.up = 754; x66.up = 222; x67.up = 459; x68.up = 567; x69.up = 56; x70.up = 768; x71.up = 58; x72.up = 47; x73.up = 367; x74.up = 320; x75.up = 433; x76.up = 589; x77.up = 467; x78.up = 64; x79.up = 100000; x80.up = 100000; x81.up = 100000; x82.up = 100000; x83.up = 100000; x84.up = 100000; x85.up = 100000; x86.up = 34; x87.up = 100000; x88.up = 100000; x89.up = 100000; x90.up = 100000; x91.up = 100000; x92.up = 100000; x93.up = 100000; x94.up = 126; x95.up = 100000; x96.up = 100000; x97.up = 100000; x98.up = 100000; x99.up = 100000; x100.up = 100000; x101.up = 100000; x102.up = 128; x103.up = 100000; x104.up = 100000; x105.up = 100000; x106.up = 100000; x107.up = 100000; x108.up = 100000; x109.up = 100000; x110.up = 100000; x111.up = 100000; x112.up = 100000; x113.up = 100000; x114.up = 100000; x115.up = 100000; x116.up = 100000; x117.up = 100000; x118.up = 100000; x119.up = 100000; x120.up = 100000; x121.up = 100000; x122.up = 100000; x123.up = 100000; x124.up = 100000; x125.up = 100000; x126.up = 100000; x127.up = 100000; x128.up = 100000; x129.up = 100000; x130.up = 100000; x131.up = 100000; x132.up = 100000; x133.up = 100000; x134.up = 100000; x135.up = 100000; x136.up = 100000; x137.up = 100000; Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' m.tolproj = 0.0; $if not set QCP $set QCP QCP Solve m using %QCP% minimizing objvar;
Website © 2017-2021 by Zuse Institute Berlin and GAMS. All rights reserved.
Imprint.
QPLIB is licensed under CC-BY 4.0.