QPLIB
A Library of Quadratic Programming Instances
Home // browse instances // view statistics // read documentation // download QPLIB archiveQPLIB_3361
Formats | gms lp mod qplib |
Problem type probtype | QBL |
Solution point objective value solobjvalue | 88700.00000000 (gdx, sol) |
Solution point infeasibility solinfeasibility | 0.0000e+00 |
Donor donor | Ruth Misener |
#Variables nvars | 1024 |
#Binary Variables nbinvars | 1024 |
#Integer Variables nintvars | 0 |
#Bounded non-binary Variables nboundedvars | 0 |
#Variables with only one bound nsingleboundedvars | 0 |
#Nonlinear Variables nnlvars | 960 |
#Nonlinear Binary Variables nnlbinvars | 960 |
#Nonlinear Integer Variables nnlintvars | 0 |
Objective Sense objsense | min |
Objective type objtype | quadratic |
Objective curvature objcurvature | indefinite |
#Negative eigenvalues in objective matrix nobjquadnegev | 290 |
#Positive eigenvalues in objective matrix nobjquadposev | 327 |
#Nonzeros in Objective nobjnz | 960 |
#Nonlinear Nonzeros in Objective nobjnlnz | 960 |
#Quadratic Terms in Objective nobjquadnz | 163680 |
#Square Terms in Objective nobjquaddiagnz | 0 |
#Constraints ncons | 64 |
#Linear Constraints nlincons | 64 |
#Quadratic Constraints nquadcons | 0 |
#Diagonal Quadratic Constraints ndiagquadcons | 0 |
Constraints curvature conscurvature | linear |
#Convex Nonlinear Constraints nconvexnlcons | 0 |
#Concave Nonlinear Constraints nconcavenlcons | 0 |
#Indefinite Nonlinear Constraints nindefinitenlcons | 0 |
#Nonzeros in Jacobian njacobiannz | 2048 |
#Nonlinear Nonzeros in Jacobian njacobiannlnz | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangian nlaghessiannz | 327360 |
#Nonzeros in Diagonal of Hessian of Lagrangian nlaghessiandiagnz | 0 |
#Blocks in Hessian of Lagrangian nlaghessianblocks | 1 |
Minimal blocksize in Hessian of Lagrangian laghessianminblocksize | 960 |
Maximal blocksize in Hessian of Lagrangian laghessianmaxblocksize | 960 |
Average blocksize in Hessian of Lagrangian laghessianavgblocksize | 960.0 |
Sparsity Jacobian | |
Sparsity Lag. Hessian |
Website © 2017-2023 by Zuse Institute Berlin and GAMS. All rights reserved.
Imprint.
QPLIB is licensed under CC-BY 4.0.